Refine your search:     
Report No.
 - 

Combining muon spin relaxation and DFT simulations of hydrogen trapping in Al$$_{6}$$Mn

Shimizu, Kazuyuki*; Nishimura, Katsuhiko*; Matsuda, Kenji*; Akamaru, Satoshi*; Nunomura, Norio*; Namiki, Takahiro*; Tsuchiya, Taiki*; Lee, S.*; Higemoto, Wataru  ; Tsuru, Tomohito   ; Toda, Hiroyuki*

Hydrogen at the mass ppm level causes hydrogen embrittlement in metallic materials, but it is extremely difficult to experimentally elucidate the hydrogen trapping sites. We have taken advantage of the fact that positive muons can act as light isotopes of hydrogen to study the trapping state of hydrogen in matter. Zero-field muon spin relaxation experiments and the density functional theory (DFT) calculations for hydrogen trapping energy are carried out for Al$$_{6}$$Mn. The DFT calculations for hydrogen in Al$$_{6}$$Mn have found four possible trapping sites in which the hydrogen trapping energies are 0.168 (site 1), 0.312 (site 2), 0.364 (site 3), and 0.495 (site 4) in the unit of eV/atom. Temperature variations of the deduced dipole field width ($$Delta$$) indicated step-like changes at temperatures, 94, 193, and 236 K. Considering their site densities, the observed $$Delta$$ change temperatures are interpreted by trapping muons at sites 1, 3, and 4.

Accesses

:

- Accesses

InCites™

:

Percentile:47.38

Category:Nanoscience & Nanotechnology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.