Improvement of aerosol time-of-flight mass spectrometer for on-line measurement of tiny particles containing alpha emitters (Contract research); FY2023 Nuclear Energy Science & Technology and Human Resource Development Project
Collaborative Laboratories for Advanced Decommissioning Science; Osaka University*
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Improvement of aerosol time-of-flight mass spectrometer for on-line measurement of tiny particles containing alpha emitters" conducted from FY2021 to FY2023. The present study aims to improve Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) in order to monitor tiny particles containing alpha emitters such as U and Pu which were generated in removing debris from the reactors of 1F. We newly fabricated the improved ATOFMS quipped with a reflectron and carried out measurements for modeled tiny particles containing U. In obtained TOF spectra, ion peaks were observed for Zr
,
U
, and their oxides as well as Zr
and
U
. Mass resolution of the ion peak of
U+ was 1,700, which demonstrates that the improved ATOFMS has sufficient mass resolution to distinguish
Pu
from
U
. In the development of the apparatus for preparing enriched and enlarged particles, we fabricated the apparatus consisting of PILS, a volume reduction tube, a supersonic atomizer, and an online dryer, and optimized apparatus conditions. In the optimized conditions, enlarged particles with size between 0.4
m and 0.8
m which are detectable with ATOFMS were dominantly produced. By analyzing the enlarged particles, these were produced by taking component elements of the apparatuses used in the enlarged process. The efficiency was evaluated to be 4.5 times. From these developments, the detection concentration limits of the apparatus were evaluated to be 7.0
10
, 4.2
10
, and 1.3
10
Bq/cm
for
U,
U, and
Pu, respectively. These values are below the air concentration limit.