Refine your search:     
Report No.
 - 

Momentum exchange functions model for SIMMER-III and SIMMER-IV

Tobita, Yoshiharu*; Kondo, Satoru; Suzuki, Toru*

The SIMMER-III and SIMMER-IV computer code, developed at the Japan Atomic Energy Agency (JAEA), is a two- and three-dimensional, multi-velocity-field, multi-component fluid-dynamics model, coupled with a space- and time-dependent neutron kinetics model. The codes have been used widely for simulating complex phenomena during core-disruptive accidents in liquid-metal fast reactors. In the multi-velocity-field fluid dynamics, momentum exchange functions (MXFs) are required for treating inter-field drag and fluid-structure friction effects and thereby for accurately simulating reactivity effects of relative motion of core materials. Up to 8 velocity fields can be used in SIMMER-III and SIMMER-IV, with each field exchanging momentum with other fields and structure surfaces. Since both theoretical and experimental knowledge of the momentum exchange processes for a multi-component, multi-velocity flows is limited, the developed MXF formulations are based on engineering correlations of steady-state two-phase flows. Multi-phase flow regimes for both the pool and channel flows are modeled with using an appropriate averaging procedure such as to avoid abrupt changes in MXFs at flow regime transition. The MXF model, together with the multi-phase flow topology and interfacial area model, has been extensively tested through the code assessment (verification and validation) program, which has demonstrated that many of the problems associated with limitation of two velocity fields and simplistic modeling in the previous codes were resolved.

Acecsses

:

- Accesses

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.