Horonobe Underground Research Laboratory Project; Investigation program for the fiscal year 2024
Nakayama, Masashi
The Horonobe Underground Research Laboratory Project is being pursued by the Japan Atomic Energy Agency to enhance the reliability of relevant technologies for geological disposal of high-level radioactive waste through investigating the deep geological environment within the host sedimentary rocks at Horonobe Town in Hokkaido, north Japan. In the fiscal year 2024, we continue R&D on "Study on near-field system performance in geological environment", "Demonstration of repository design options", and "Understanding of buffering behaviour of sedimentary rocks to natural perturbations". These are identified as key R&D challenges to be tackled in the Horonobe underground research plan for the fiscal year 2020 onwards. In the "Study on near-field system performance in geological environment", we continue to obtain data from the full-scale engineered barrier system performance experiment, and work on the specifics of the full-scale engineered barrier system dismantling experiment. We summarise the solute transport experiments for the excavation damaged zone and the effects of organic matter, micro-organisms and colloids, and develop the assessment methodology. We summarise the evaluation methodology using the deep Wakkanai Formation as a case study for block-scale solute transport experiments. As for "Demonstration of repository design options", we summarise the results of investigations and experiments on changes in the geological environment after tunnel excavation and closure, and summarise the applicability and technical challenges of the closure technology for boreholes excavated from tunnels. The systematic integration of technologies towards EBS emplacement, including the organisation of investigation and evaluation methods and analysis, will be promoted. Experiments to confirm the performance of the engineered barrier system under critical conditions, such as high temperatures (100C), continue the in-situ tests started in 2023.