Refine your search:     
Report No.
 - 

Observation of high-pressure polymorphs in bulk silicon formed at relativistic laser intensities

Rapp, L.*; Matsuoka, Takeshi*; Firestein, K. L.*; Sagae, Daisuke*; Habara, Hideaki*; Mukai, Keiichiro*; Tanaka, Kazuo*; Gamaly, E. G.*; Kodama, Ryosuke*; Seto, Yusuke*; Shobu, Takahisa  ; Tominaga, Aki; Smillie, L.*; Pikuz, T.*; Haberl, B.*; Yabuuchi, Toshinori*; Togashi, Tadashi*; Inubushi, Yuichi*; Yabashi, Makina*; Juodkazis, S.*; Golberg, D. V.*; Rode, A. V.*; Ozaki, Narimasa*

It is generally known that irradiating a solid surface with a laser pulse of ultra-relativistic intensity generates a plasma on the surface, which in turn creates an ultrahigh pressure inside. In this study, the crystal structure analysis of high-pressure phases generated inside silicon single-crystals irradiated by this laser was performed using the diffraction system at the Stress and Imaging apparatus of BL22XU, which is a JAEA-BL. The results obtained confirm the existence of high-pressure phases that silicon is said to possess: body-centered, rhombohedral, hexagonal, and tetragonal phases in the interior. We can get the results that the crystal structure of silicon polymorphs of being include body-centered, rhombohedral, hexagonal-diamond, tetragonal exists. In the future, we will accumulate data and apply them to control the internal structure, strength, and functionality of materials.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.