Refine your search:     
Report No.
 - 

Magnetic structure and magnetoelectric properties of the spin-flop phase in LiFePO$$_{4}$$

Holm-Janas, S.*; Akaki, Mitsuru*; Fogh, E.*; Kihara, Takumi*; Le, M. D.*; Forino, P. C.*; Nikitin, S. E.*; Fennell, T.*; Painganoor, A.*; Vaknin, D.*; Watanabe, Masao   ; Christensen, N. B.*; Nojiri, Hiroyuki*; Toft-Petersen, R.*

We investigate the magnetic structure and magnetoelectric (ME) effect in the high-field phase of the antiferromagnet LiFePO$$_{4}$$ above the critical field of 31 T. A neutron diffraction study in pulsed magnetic fields reveals the propagation vector to be q = 0 for the high-field magnetic structure. In addition, neutron diffraction measurements in low magnetic fields show no observable field-induced spin canting, which indicates negligible Dzyaloshinskii-Moriya interaction. The observed spin-flop field supports the Hamiltonian recently deduced from inelastic neutron studies and indicates that the system is less frustrated and with a larger single-ion anisotropy than originally thought. Our results demonstrate the effectiveness of combining pulsed-field neutron diffraction and electric polarization measurements to elucidate the magnetic structures and symmetries at the highest attainable field strengths.

Accesses

:

- Accesses

InCites™

:

Percentile:0.00

Category:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.