Refine your search:     
Report No.
 - 

Elucidation of the formation process and shape determining factors of GP zones and nanoclusters in Al-Cu and Al-Mg-Si alloys

Shoji, Mizuki*; Kurihara, Kensuke*; Lobzenko, I.   ; Tsuru, Tomohito   ; Serizawa, Ai*

While Plate-like Guinier-Preston (GP) zones are formed during aging process in Al-Cu alloys, spherical nanocluster formation occurs in the early stage of aging in Al-Mg-Si alloys. Unlike well-known GP (I) zone in Al-Cu, there is no specific configurations within the nanocluster. However, the solute concentration and local configuration should play decisive role in subsequent formation of precipitations. In the present study, the first-principles calculations were performed to investigate the factors determining the stable shape during the formation process of GP zones and clusters in Al-Cu and Al-Mg-Si alloys. As a result of formation energy of three-body bonds, the Cu-Cu-Cu triplet with the bond angle of 90deg was the most stable. Monte Carlo simulations with newly developed machine-learning potential were then performed, and consequently the segregation of Cu atom formed with bond angle of 90deg are observed more frequently. In contrast, three-body triplet in Al-Mg-Si alloy was most stable without any specific directional anisotropy, when the bond angle was 60deg, resulting in the formation of spherical nanoclusters. These results suggest that the intrinsic feature of the stability of local bonding dominates the shape of GP zones and nanoclusters, in which planar- or spherical-like cluster is formed.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.