Refine your search:     
Report No.
 - 

Giant barocaloric effects in sodium hexafluorophosphate and hexafluoroarsenate

Zhang, Z.*; Hattori, Takanori   ; Song, R.*; Yu, D.*; Mole, R.*; Chen, J.*; He, L.*; Zhang, Z.*; Li, B.*

Solid-state refrigeration using barocaloric materials is environmentally friendly and highly efficient, making it a subject of global interest over the past decade. Here, we report giant barocaloric effects in sodium hexafluorophosphate (NaPF$$_6$$) and sodium hexafluoroarsenate (NaAsF$$_6$$) that both undergo a cubic-to-rhombohedral phase transition near room temperature. We have determined that the low-temperature phase structure of NaPF$$_6$$ is a rhombohedral structure with space group R$=3 by neutron powder diffraction. There are three Raman active vibration modes in NaPF$_6$$ and NaAsF$$_6$$, i.e., F$$_{2g}$$, E$$_g$$, and A$$_{1g}$$. The phase transition temperature varies with pressure at a rate of dT$$_t$$/dP = 250 and 310 K/GPa for NaPF$$_6$$ and NaAsF$$_6$$. The pressure-induced entropy changes of NaPF$$_6$$ and NaAsF$$_6$$ are determined to be around 45.2 and 35.6J kg$$^{-1}$$K$$^{-1}$$, respectively. The saturation driving pressure is about 40 MPa. The pressure-dependent neutron powder diffraction suggests that the barocaloric effects are related to the pressure-induced cubic-to-rhombohedral phase transitions.

Accesses

:

- Accesses

InCites™

:

Percentile:40.97

Category:Physics, Applied

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.