Refine your search:     
Report No.
 - 

Fast burnup calculation method based on neutron spectrum reconstruction with proper orthogonal decomposition and regression model

Watanabe, Tomoaki  ; Aizawa, Naoto*; Chiba, Go*; Tada, Kenichi   ; Yamamoto, Akio*

Currently, a major burnup calculation method for the nuclide composition of nuclear fuel conducts neutron transport calculations at each burnup step to account for changes in the neutron spectrum. While this method is highly accurate, the large computational cost of neutron transport calculations can be problematic. Therefore, a fast burnup calculation method based on neutron spectrum reconstruction with the proper orthogonal decomposition (POD) and regression model is investigated. In this method, dimensionality reduction by POD is applied to many neutron fluxes obtained from detailed burnup calculations for various input parameter sets, and regression models are constructed to connect the dimensionality-reduced neutron fluxes and parameters. By substituting arbitrary input parameters to the regression models, the neutron flux is reconstructed and the burnup calculation is performed. This method performs burnup calculations that consider changes in the neutron spectrum based on input conditions without neutron transport calculations. The present method was applied to a PWR UO$$_{2}$$ fuel pin cell model. The results show the nuclide inventory can be calculated with a prediction accuracy within a few percent. In addition, it is found that the calculation error is dominated by the regression models, which implies the further improvement of the regression models leads to improving the accuracy.

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.