Refine your search:     
Report No.
 - 

Novel approach to explore hydrogen trapping sites in aluminum; Integrating Muon spin relaxation with first-principles calculations

Shimizu, Kazuyuki*; Nishimura, Katsuhiko*; Matsuda, Kenji*; Nunomura, Norio*; Namiki, Takahiro*; Tsuchiya, Taiki*; Akamaru, Satoshi*; Lee, S.*; Tsuru, Tomohito   ; Higemoto, Wataru  ; Toda, Hiroyuki*

Zero-field muon spin relaxation experiments were conducted on Al-0.06%Mn, Al-0.06%Cr, Al-0.02%Fe, and Al-0.02%Ni alloys (at.%) across the temperature ranging from 5 to 300 K. The temperature-dependent variations of the dipole field widths ($$Delta$$) elucidated four distinct peaks for the prepared alloys. Atomic configurations of the muon trapping sites corresponding to the observed $$Delta$$ peaks below 200 K were meticulously characterized utilizing first-principles calculations for the trapping energies of hydrogen in proximity to a solute and solute-vacancy pair. This comprehensive analysis facilitated the establishment of a linear correlation between the muon $$Delta$$ peak temperature and the hydrogen trapping energy. However, significant deviations from this linear relationship were observed for the fourth $$Delta$$ peaks above 200 K in Al-Mn, Al-Cr, Al-Fe, and Al-Ni alloys. This discrepancy can be interpreted by considering the disparate distribution functions of muon and hydrogen within the tetrahedral site, wherein two of the four Al atoms are substituted by the solute element and vacancy (solute-vacancy pair).

Accesses

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.