Refine your search:     
Report No.
 - 

Thermal conductivity evaluation of Am-doped oxide fuels

Yokoyama, Keisuke ; Watanabe, Masashi  ; Onishi, Takashi  ; Yano, Yasuhide  ; Tokoro, Daishiro*; Sugata, Hiromasa*; Kato, Masato*

It is advocated as a development target of fast reactors (FRs) to allow for the of use of mixed oxide (MOX) fuels containing minor actinide (MA) separated and recovered from spent fuels with the aim of reducing the volume and toxicity of high-level radioactive waste generated from nuclear reactors. In the development of MAMOX fuels, it is important behavior to understand the thermal properties such as thermal conductivity for fuel design and analysis of the irradiation. However, there are only a few reports on the thermal properties of MA-MOX fuels, and neither the effects of MA contents nor of oxygen non-stoichiometry in MOX fuels on their thermal conductivities have been fully understood. In this study, the thermal conductivities of MOX fuels with up to 15% Am content were measured at near-stoichiometric composition and the relationship between thermal conductivity and Am content was evaluated. Moreover, the thermal conductivities of Am-doped UO$$_{2}$$ fuels were also measured and evaluated by comparison with Am-MOX to evaluate the effect of Am content. The fuel samples used in this study were three types of MOX with a Pu content of 30% and different Am contents (5%, 10%, and 15%), and UO$$_{2}$$ containing 15% Am. The thermal conductivities of specimens were calculated from the thermal diffusivities measured by the laser flash method, the density of the specimens and, the heat capacity at constant pressure. The oxygen partial pressure during the measurement was controlled at that of the targeted near-stoichiometric composition. The thermal conductivities of all specimens exhibited a decline with increasing temperature and Am content, with a particularly pronounced reduction observed below 1,173 K. The results of the classical phonon scattering model analysis of the measured thermal conductivities showed that the effect of lattice strain due to the Am addition was significant on the thermal resistivity change, and the effect was comparable for both MOX and UO$$_{2}$$.

Acecsses

:

- Accesses

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.