Addendum: Site occupancy of interstitial deuterium atoms in face-centred cubic iron
Machida, Akihiko*; Saito, Hiroyuki*; Sugimoto, Hidehiko*; Hattori, Takanori
; Sano, Asami
; Endo, Naruki*; Katayama, Yoshinori*; Iizuka, Riko*; Sato, Toyoto*; Matsuo, Motoaki*; Orimo, Shinichi*; Aoki, Katsutoshi*
In our previous article (Nature Commun. 5, 5063 (2014)), the site occupancies of D atoms dissolved in an fcc Fe metal lattice were investigated via Rietveld refinement of neutron powder diffraction patterns collected at 988 K and 6.3 GPa. The fcc metal lattice has two interstitial sites available for accommodating D atoms: octahedral and tetrahedral sites. The Rietveld refinement revealed that D atoms occupied mainly the octahedral sites with occupancy of 0.532 and slightly the tetrahedral sites with occupancy of 0.056. Subsequent density-functional-theory (DFT) calculations by Antonov (Phys. Rev. Mater. 2019)) showed that the occupation energy on the tetrahedral site was significantly higher than that on the octahedral site; the tetrahedral site occupation was unlikely to occur even at temperatures as high as 988 K. We reexamined the site occupancies of D-atom by Rietveld refinement including extinction correction. As a result, the octahedral occupancy was increased to 0.60 and the tetrahedral occupancy was reduced to zero. The occupation of only the octahedral site for D atom is consistent with the DFT calculation, although in contrast to the previous results.