検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Strong low-energy rattling modes enabled liquid-like ultralow thermal conductivity in a well-ordered solid

Liu, P.-F.*; Li, X.*; Li, J.*; Zhu, J.*; Tong, Z.*; 古府 麻衣子*   ; 楡井 真実; Xu, J.*; Yin, W.*; Wang, F.*; Liang, T.*; Xie, L.*; Zhang, Y.*; Singh, D. J.*; Ma, J.*; Lin, H.*; Zhang, J.*; He, J. Q.*; Wang, B.-T.*

Liu, P.-F.*; Li, X.*; Li, J.*; Zhu, J.*; Tong, Z.*; Kofu, Maiko*; Nirei, Masami; Xu, J.*; Yin, W.*; Wang, F.*; Liang, T.*; Xie, L.*; Zhang, Y.*; Singh, D. J.*; Ma, J.*; Lin, H.*; Zhang, J.*; He, J. Q.*; Wang, B.-T.*

Crystalline solids exhibiting inherently low lattice thermal conductivity ($$kappa_{rm L}$$) are of great importance in applications such as thermoelectrics and thermal barrier coatings. However, $$kappa_{rm L}$$ cannot be arbitrarily low and is limited by the minimum thermal conductivity related to phonon dispersions. In this work, we report the liquid-like thermal transport in a well-ordered crystalline CsAg$$_5$$Te$$_3$$, which exhibits an extremely low $$kappa_{rm L}$$ value of $$sim$$ 0.18 Wm$$^{-1}$$K$$^{-1}$$. On the basis of first-principles calculations and inelastic neutron scattering measurements, we find that there are lots of low-lying optical phonon modes at $$sim$$ 3.1 meV hosting the avoided-crossing behavior with acoustic phonons. These strongly localized modes are accompanied by weakly bound rattling Ag atoms with thermally induced large amplitudes of vibrations. Using the two-channel model, we demonstrate that coupling of the particle-like phonon modes and the heat-carrying wave-like phonons is essential for understanding the low $$kappa_{rm L}$$, which is heavily deviated from the $$1/T$$ temperature dependence of the standard Peierls theory. In addition, our analysis indicates that the soft structural framework with liquid-like motions of the fluctuating Ag atoms is the underlying cause that leads to the suppression of the heat conduction in CsAg$$_5$$Te$$_3$$. These factors synergistically account for the ultralow $$kappa_{rm L}$$ value. Our results demonstrate that the liquid-like heat transfer could indeed exist in a well-ordered crystal.

Access

:

- Accesses

InCites™

:

パーセンタイル:72.42

分野:Multidisciplinary Sciences

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.