検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Methods for regulating depth of corrosion fissures in simulated fastener holes of 7050-T7451 aluminum alloy

青山 高士   ; Choudhary, S.*; Pandaleon, A.*; Burns, J. T.*; Kokaly, M.*; Restis, J.*; Ross, J.*; Kelly, R. G.*

Aoyama, Takahito; Choudhary, S.*; Pandaleon, A.*; Burns, J. T.*; Kokaly, M.*; Restis, J.*; Ross, J.*; Kelly, R. G.*

This study presents a new test method for inducing controlled corrosion damage within simulated fastener holes of aluminum alloys, aimed at pretreating fatigue test specimens. The method involves insulating the outer surface while exposing the fastener hole surface to electrolytes containing 0.66 M NaCl + 0.1 M AlCl $$_{3}$$ with varying concentrations of K $$_{2}$$S $$_{2}$$O $$_{8}$$. The evolution of corrosion damage within the fastener hole was examined as a function of exposure duration, electrolyte composition, and volume, as well as the effect of galvanic coupling with a SS316 cathode. Results indicate that fissure depth increases with an increase in K $$_{2}$$S $$_{2}$$O $$_{8}$$ concentration but does not progress further after 24-48 hours of exposure in the chemical, or freely-corroding, exposure test. In contrast, galvanic coupling with a SS316 plate significantly accelerates corrosion, leading to much deeper fissures in a shorter time. The importance of electrolyte replenishment has been explored using electrochemical measurements, revealing the impact of evolving electrolyte chemistry. Beyond its application in fatigue specimen pretreatment, this method provides a simple yet effective approach for studying localized corrosion and evaluating mitigation strategies for fastener holes in aerospace structures.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.