Composition dependence of the anomalous Nernst effect in Fe
Mn
N and Fe
Co
N films
Yin, W.*; 伊藤 啓太*; 坪和 優佑*; 辻川 雅人*; 白井 正文*; 梅津 理恵*; 高梨 弘毅
Yin, W.*; Ito, Keita*; Tsubowa, Yusuke*; Tsujikawa, Masahito*; Shirai, Masafumi*; Umetsu, Rie*; Takanashi, Koki
Fe
N exhibits a large anomalous Nernst effect (ANE), which motivates a systematic study of enhancing the anomalous Nernst coefficient (S
) by modulating its electronic and magnetic structures. In this study, Mn and Co substitution effects for Fe in Fe
N on S
were investigated. Fe
Mn
N and Fe
Co
N films in wide ranges of x and y were grown epitaxially on MgO(001) and (LaAlO
)
(Sr
TaAlO
)
(001) substrates, respectively, using molecular beam epitaxy. The S
value of the Fe
N film is suppressed by substituting Fe with Mn or Co. By measuring the ANE, Seebeck effect, and anomalous Hall effect, the transverse thermoelectric conductivity (
) was evaluated. The composition dependence of S
was dominated by the change of
for both Fe
Mn
N and Fe
Co
N films. First-principles calculations were conducted for the transverse electric conductivity (
) and
of Fe
N and Fe
Co
N, and large
leading to large S
was predicted in Fe
Co
N.