An Analytical study on Russia's civilian nuclear energy utilization
Kawasaki, Nobuchika 
Russia is one of the most advanced countries in the civilian use of nuclear energy. However, understanding the internal mechanisms of its nuclear program remains difficult due to various reasons. Therefore, this study presents a historical overview of Russia's nuclear energy utilization, fuel supply, fuel manufacturing capabilities, and concepts regarding reprocessing and the nuclear fuel cycle. From this overview, insights have been extracted and analyzed. These insights are then organized under two strategic perspectives: "Strategic diversity and continuity in developments and demonstrations" and "Diversity in utilizations and deployments," with considerations of implications for Japan, as below. Russia's nuclear energy policy strategically utilizes a variety of reactor types and fuel cycle technologies to expand nuclear power generation both domestically and internationally. Currently, nuclear power, centered on light-water reactors (VVER series), accounts for about 20% of Russia's electricity supply, and there are plans to increase this share to 25% by 2045. A wide range of reactors, from large-scale to medium and small modular reactors, are being constructed in Russia. Russia is also actively developing fast reactor technologies, and focusing on the reprocessing and recycling of spent fuel. Internationally, VVER-1200 reactors are under construction in several countries, and cooperation with China is deepening in the field of fast reactors. Notably, Russia offers an integrated, or selectively customizable, package of nuclear technology services on the international stage. These include not only reactor deployment, but also fuel supply, reprocessing, waste management, and even the provision of radioisotopes. Rather than simply exporting products or technology, Russia fosters long-term relationships and trust by flexibly responding to the conditions and needs of partner countries. For this reason, Russia promotes the technology developments in advance within the country in areas anticipated for future overseas deployment. It carefully selects target technologies and services and systematically rolls them out. This flexible strategy, combining "technological diversity" and "strategic consistency", enables cooperation with countries across various geopolitical contexts. For Japan, this strategic approach offers valuable lessons on how to engage in comprehensive international nuclear cooperation, not merely through technology exports, but through integrated approaches that encompass the entire fuel cycle, and by combining elements such as fast reactors and RI supply.