Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamaguchi, Mitsutaka; Torikai, Kota*; Kawachi, Naoki; Shimada, Hirofumi*; Sato, Takahiro; Nagao, Yuto; Fujimaki, Shu; Kokubun, Motohide*; Watanabe, Shin*; Takahashi, Tadayuki*; et al.
Physics in Medicine & Biology, 61(9), p.3638 - 3644, 2016/05
Times Cited Count:10 Percentile:99.10(Engineering, Biomedical)no abstracts in English
Yamaguchi, Mitsutaka; Nagao, Yuto; Kawachi, Naoki; Sato, Takahiro; Fujimaki, Shu; Kamiya, Tomihiro; Torikai, Kota*; Shimada, Hirofumi*; Sugai, Hiroyuki*; Sakai, Makoto*; et al.
International Journal of PIXE, 26(1&2), p.61 - 72, 2016/00
no abstracts in English
Takahashi, Akihisa*; Kubo, Makoto*; Igarashi, Chie*; Yoshida, Yukari*; Funayama, Tomoo; Kobayashi, Yasuhiko; Nakano, Takashi*
JAEA-Review 2014-050, JAEA Takasaki Annual Report 2013, P. 82, 2015/03
DNA double-strand breaks (DSBs) induced by ionizing radiation pose a major threat to cell survival. The cell can respond to the presence of DSBs, through two major repair pathways: Homologous recombination (HR) and non-homologous end-joining (NHEJ). Higher levels of cell death are induced by high-LET radiation when compared to low-LET radiation, even at the same doses because of less effective or more inefficient DNA repair. In this study, we examine the effects of radiation with different LET values on DNA DSB repair and radiosensitivity. Wild-type cells and HR deficient (but NHEJ proficient) cells exhibited the high RBE values at LET values of 108 keV/ m. The RBE value for each cell type decreased with increasing LET values over 200 keV/
m. Although NHEJ proficient cells had an almost constant SER value, NHEJ deficient cells showed a high SER value when compared to NHEJ proficient cells, even with increasing LET values.
Yoshida, Yukari*; Mizohata, Kensuke*; Matsumura, Akihiko*; Isono, Mayu*; Yako, Tomoko*; Nakano, Takashi*; Funayama, Tomoo; Kobayashi, Yasuhiko; Kanai, Tatsuaki*
JAEA-Review 2014-050, JAEA Takasaki Annual Report 2013, P. 81, 2015/03
In the clinical application of carbon-ion (C-ion) radiation therapy in Japan, different RBE values of carbons have been used for clinical and biological endpoints. The biological RBE (bRBE) was estimated by a method that is based on the linear-quadratic (LQ) model, and was defined at the 10% surviving fraction of human salivary gland (HSG) tumor cells. However, many of biological parameters, that is, type of tissues, different sort of cells, oxygenation levels, and all, could affect radiosensitivity. Thus, normal human dermal fibroblasts (NHDF) cells were exposed to C-ion beams at Gunma University (10-80 keV/micrometer) and TIARA (108 and 158 keV/micrometer). The surviving fractions were analyzed with colony formation assays. The experimental RBE (eRBE) values were estimated from the radiation dose survival curve fitted by LQ model, and defined
.
Takahashi, Akihisa*; Kubo, Makoto*; Ma, H.*; Nakagawa, Akiko*; Yoshida, Yukari*; Isono, Mayu*; Kanai, Tatsuaki*; Ono, Tatsuya*; Furusawa, Yoshiya*; Funayama, Tomoo; et al.
Radiation Research, 182(3), p.338 - 344, 2014/09
Times Cited Count:59 Percentile:89.94(Biology)To clarify whether high-LET radiation inhibits all repair pathways or specifically one repair pathway, studies were designed to examine the effects of radiation with different LET values on DNA DSB repair and radiosensitivity. Embryonic fibroblasts bearing repair gene KO were exposed to X rays, carbon-, iron-, neon- and argon-ion beams. Cell survival was measured with colony-forming assays. The sensitization enhancement ratio (SER) values were calculated using the 10% survival dose of wild-type cells and repair-deficient cells. Cellular radiosensitivity was listed in descending order: double-KO cells NHEJ-KO cells
HR-KO cells
wild-type cells. Although HR-KO cells had an almost constant SER value, NHEJ-KO cells showed a high-SER value when compared to HR-KO cells, even with increasing LET values. These results suggest that with carbon-ion therapy, targeting NHEJ repair yields higher radiosensitivity than targeting homologous recombination repair.
Murata, Kazutoshi*; Noda, Shinei*; Oike, Takahiro*; Takahashi, Akihisa*; Yoshida, Yukari*; Suzuki, Yoshiyuki*; Ono, Tatsuya*; Funayama, Tomoo; Kobayashi, Yasuhiko; Takahashi, Takeo*; et al.
Journal of Radiation Research, 55(4), p.658 - 664, 2014/07
Times Cited Count:15 Percentile:53.28(Biology)The effect of carbon ion irradiation on cell motility through the Rho signaling pathway in the human lung adenocarcinoma cell line A549 was studied. At 48 h after irradiation, the cell motility of A549 cells became significantly greater, and the formation of protrusions significantly increased in cells irradiated with carbon ion. The observed increase in cell motility due to carbon ion irradiation was similar to that observed due to X-ray irradiation. Western-blot analysis showed that carbon ion irradiation increased P-MLC2-S19 expression compared with in unirradiated controls, while total MLC2 expression was unchanged. Exposure to a non-toxic concentration of Y-27632, a specific inhibitor of ROCK, reduced the expression of P-MLC2-S19 after C-ion irradiation, resulting in a significant reduction in migration. These data suggest that carbon irradiation increases cell motility in A549 cells via the Rho signaling pathway and that ROCK inhibition reduces that effect.
Suzuki, Yoshiyuki*; Yamaguchi, Mitsutaka; Odaka, Hirokazu*; Shimada, Hirofumi*; Yoshida, Yukari*; Torikai, Kota*; Sato, Takahiro; Arakawa, Kazuo*; Kawachi, Naoki; Watanabe, Shigeki; et al.
Radiology, 267(3), p.941 - 947, 2013/06
Times Cited Count:24 Percentile:64.31(Radiology, Nuclear Medicine & Medical Imaging)Yamaguchi, Mitsutaka; Nagao, Yuto; Kawachi, Naoki; Fujimaki, Shu; Kamiya, Tomihiro; Odaka, Hirokazu*; Kokubun, Motohide*; Takeda, Shinichiro*; Watanabe, Shin*; Takahashi, Tadayuki*; et al.
Proceedings of 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), 3 Pages, 2013/00
Yamaguchi, Mitsutaka; Torikai, Kota*; Kawachi, Naoki; Shimada, Hirofumi*; Sato, Takahiro; Nagao, Yuto; Fujimaki, Shu; Kokubun, Motohide*; Watanabe, Shin*; Takahashi, Tadayuki*; et al.
Proceedings of 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), 2 Pages, 2013/00
Takeda, Shinichiro*; Ichinohe, Yuto*; Hagino, Koichi*; Odaka, Hirokazu*; Yuasa, Takayuki*; Ishikawa, Shinnosuke*; Fukuyama, Taro*; Saito, Shinya*; Sato, Tamotsu*; Sato, Goro*; et al.
Physics Procedia, 37, p.859 - 866, 2012/10
Times Cited Count:25 Percentile:98.53(Physics, Applied)By using new Compton camera consisting of silicon double-sided strip detector (Si-DSD) and CdTe-DSD developed for the ASTRO-H mission, an experiment was conducted to study its feasibility for advanced hotspot monitoring. In addition to hotspot imaging already provided by commercial imaging systems, the identification of the variety of radioisotopes is realized thanks to the good energy resolution given by the semiconductor detectors. Three radioisotopes of Ba (356 keV),
Na (511 keV) and
Cs (662 keV) were individually imaged by applying event selection in the energy window and the
-ray images was correctly overlapped by an optical picture. The detection efficiency of 1.68
10
(effective area: 1.7
10
cm
) and angular resolution of 3.8
were obtained by stacking five detector modules for 662 keV
-ray. The higher detection efficiency required in a specific use can be achieved by stacking more detector modules.
Musha, Atsushi*; Yoshida, Yukari*; Takahashi, Takeo*; Ando, Koichi*; Funayama, Tomoo; Kobayashi, Yasuhiko; Negishi, Akihide*; Yokoo, Satoshi*; Nakano, Takashi*
Journal of Radiation Research, 53(4), p.545 - 550, 2012/07
Times Cited Count:11 Percentile:48.31(Biology)Yamaguchi, Mitsutaka; Torikai, Kota*; Kawachi, Naoki; Shimada, Hirofumi*; Sato, Takahiro; Nagao, Yuto; Fujimaki, Shu; Kokubun, Motohide*; Watanabe, Shin*; Takahashi, Tadayuki*; et al.
Physics in Medicine & Biology, 57(10), p.2843 - 2856, 2012/05
Times Cited Count:43 Percentile:79.78(Engineering, Biomedical)Yoshida, Yukari*; Suzuki, Yoshiyuki*; Al-Jahdari, W. S.*; Hamada, Nobuyuki*; Funayama, Tomoo; Shirai, Katsuyuki*; Kato, Hiroyuki*; Sakashita, Tetsuya; Kobayashi, Yasuhiko; Nakano, Takashi*
Journal of Radiation Research, 53(1), p.87 - 92, 2012/02
Times Cited Count:8 Percentile:40.50(Biology)Yamaguchi, Mitsutaka; Kawachi, Naoki; Kamiya, Tomihiro; Sato, Takahiro; Suzui, Nobuo; Fujimaki, Shu; Odaka, Hirokazu*; Ishikawa, Shinnosuke*; Kokubun, Motohide*; Watanabe, Shin*; et al.
JAEA-Review 2011-043, JAEA Takasaki Annual Report 2010, P. 145, 2012/01
no abstracts in English
Yamaguchi, Mitsutaka; Kawachi, Naoki; Suzui, Nobuo; Fujimaki, Shu; Kamiya, Tomihiro; Odaka, Hirokazu*; Ishikawa, Shinnosuke*; Kokubun, Motohide*; Watanabe, Shin*; Takahashi, Tadayuki*; et al.
Nuclear Instruments and Methods in Physics Research A, 648(Suppl.1), p.S2 - S7, 2011/08
Times Cited Count:2 Percentile:19.38(Instruments & Instrumentation)We are constructing a three-dimensional imaging system for medical and biological applications. The system will allow simultaneous imaging at high spatial and energy resolutions across a wide energy range, from several tens of keV to a few MeV. In this work, one prototype head module have been developed for a multi-head Si/CdTe Compton camera system. The performance of the prototype was evaluated with a sealed Ba-133 radiation source. The experiments confirmed that the imaging results were consistent with actual source position. In addition to the resolution for the parallel directions to the detector surface, the position resolution was evaluated for the depth direction at a point in near region of the head-module. These position resolutions were well reproduced by Monte Carlo simulation results.
Kiyohara, Hiroki*; Ishizaki, Yasuki*; Suzuki, Yoshiyuki*; Kato, Hiroyuki*; Hamada, Nobuyuki*; Ono, Tatsuya*; Takahashi, Takeo*; Kobayashi, Yasuhiko; Nakano, Takashi*
Journal of Radiation Research, 52(3), p.287 - 292, 2011/03
Times Cited Count:16 Percentile:51.82(Biology)Kaminuma, Takuya*; Suzuki, Yoshiyuki*; Shirai, Katsuyuki*; Mizui, Toshiyuki*; Noda, Shinei*; Yoshida, Yukari*; Funayama, Tomoo; Takahashi, Takeo*; Kobayashi, Yasuhiko; Shirao, Tomoaki*; et al.
Journal of Radiation Research, 51(6), p.627 - 631, 2010/11
Times Cited Count:9 Percentile:32.75(Biology)Yamaguchi, Mitsutaka; Kawachi, Naoki; Kamiya, Tomihiro; Suzui, Nobuo; Fujimaki, Shu; Odaka, Hirokazu*; Ishikawa, Shinnosuke*; Kokubun, Motohide*; Watanabe, Shin*; Takahashi, Tadayuki*; et al.
2010 IEEE Nuclear Science Symposium Conference Record (CD-ROM), p.2004 - 2007, 2010/10
Harada, Kosaku*; Nonaka, Tetsuo*; Hamada, Nobuyuki*; Sakurai, Hideyuki*; Hasegawa, Masatoshi*; Funayama, Tomoo; Kakizaki, Takehiko*; Kobayashi, Yasuhiko; Nakano, Takashi*
Cancer Science, 100(4), p.684 - 688, 2009/04
Times Cited Count:56 Percentile:74.50(Oncology)Kawamura, Hidemasa*; Tatei, Kazuaki*; Nonaka, Tetsuo*; Obinata, Hideru*; Hattori, Tomoyasu*; Ogawa, Ai*; Kazama, Hideko*; Hamada, Nobuyuki*; Funayama, Tomoo; Sakashita, Tetsuya; et al.
Journal of Radiation Research, 50(2), p.161 - 169, 2009/03
Times Cited Count:7 Percentile:26.07(Biology)