Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 29

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Extraction of trivalent rare earths and minor actinides from nitric acid with ${it N,N,N',N'}$-tetradodecyldiglycolamide (TDdDGA) by using mixer-settler extractors in a hot cell

Ban, Yasutoshi; Suzuki, Hideya; Hotoku, Shinobu; Kawasaki, Tomohiro*; Sagawa, Hiroshi*; Tsutsui, Nao; Matsumura, Tatsuro

Solvent Extraction and Ion Exchange, 37(1), p.27 - 37, 2019/00

 Times Cited Count:22 Percentile:67.14(Chemistry, Multidisciplinary)

A continuous counter-current experiment using TDdDGA was performed using mixer-settler extractors installed in a hot cell. Nitric acid containing minor actinides (MAs: Am and Cm), rare earths (REs: Y, La, Nd, and Eu), and other fission products (Sr, Cs, Zr, Mo, Ru, Rh, and Pd) was fed to the extractor. TDdDGA effectively extracted MAs and REs from the feed, while other fission products were barely extracted. The extracted MAs and REs were back-extracted by bringing them in contact with 0.02 mol/dm$$^{3}$$ nitric acid, and they were collected as the MA-RE fraction. The proportions of MA and RE in the MA-RE fraction were $$>$$ 98% and $$>$$ 86%, respectively. These results demonstrated the applicability of TDdDGA as an extractant for MAs and REs.

Journal Articles

Highly practical and simple ligand for separation of Am(III) and Eu(III) from highly acidic media

Suzuki, Hideya; Tsubata, Yasuhiro; Kurosawa, Tatsuya; Shibata, Mitsunobu; Kawasaki, Tomohiro; Urabe, Shunichi*; Matsumura, Tatsuro

Analytical Sciences, 32(4), p.477 - 479, 2016/04

 Times Cited Count:24 Percentile:67.95(Chemistry, Analytical)

An impeccable, high-performance new reagent called alkyl diamide amine (ADAAM) was examined from the viewpoint of mutual separation of Am(III) and Eu(III). ADAAM has three donor atoms, one soft N-donor atom and two hard O-donor atoms, in the central frame. The combination of soft and hard atoms affords a tridentate donor set of atoms that ensures remarkable extractability and selectivity of Am(III) and Eu(III) in highly acidic media.

Patent

アクチノイド及び/又はランタノイドの抽出方法

鈴木 英哉; 松村 達郎; ト部 峻一; 黒澤 達也; 川崎 倫弘

国井 茂*; 吉田 貴昌*; 成田 弘一*; 田中 幹也*

JP, 2014-254092  Patent licensing information  Patent publication (In Japanese)

【課題】原子力分野や鉱工業分野で利用できるアクチノイドやランタノイドの効率的な抽出方法を提供することを目的とする。 【解決手段】アクチノイド及び/又はランタノイドを含む酸性水溶液を、下記一般式(A)(化学式のため省略)で表されるイミノ二酢酸ジアミドの存在下で有機溶媒に接触させることにより、アクチノイド及び/又はランタノイドを有機溶媒に溶解させて、効率良く抽出することができる。

Oral presentation

R&D of MA separation processes for P&T system using ADS, 5; Examination of Novel Extractants for MA/Ln separation

Suzuki, Hideya; Tsubata, Yasuhiro; Shibata, Mitsunobu; Kurosawa, Tatsuya; Kawasaki, Tomohiro; Sagawa, Hiroshi; Matsumura, Tatsuro

no journal, , 

JAEA continues to carry out the development of the ADS(Double-strata). Mutual separation of MA and Ln is important for the development of the partitioning process. The separation is particularly difficult, because they have the analogous chemical behavior. New reagent was synthesized and examined. The results of separation factors (SF) of Am against Eu are more than 25, SFAm/Cm = 5.5. The reagent is very stable chemically, high extraction capacity, fully miscible with hydrocarbon diluents, fast chemical kinetics, and following the CHON-principle.

Oral presentation

Research and development of minor actinide separation process with novel extractants

Matsumura, Tatsuro; Suzuki, Hideya; Tsubata, Yasuhiro; Shibata, Mitsunobu; Kurosawa, Tatsuya; Kawasaki, Tomohiro; Sagawa, Hiroshi

no journal, , 

no abstracts in English

Oral presentation

Current status of R&D on reprocessing and minor actinide separation process with CHON ligands in JAEA

Matsumura, Tatsuro; Ban, Yasutoshi; Suzuki, Hideya; Tsubata, Yasuhiro; Hotoku, Shinobu; Tsutsui, Nao; Suzuki, Asuka; Toigawa, Tomohiro; Kurosawa, Tatsuya*; Shibata, Mitsunobu*; et al.

no journal, , 

PUREX process was established for industrial scale reprocessing plant. TRUEX and the 4 group separation were developed for partitioning of minor actinides from HLW, and demonstrated using genuine HLW. Although the extractants for the processes have excellent performance, the molecules contain phosphorus which could be cause for the secondary waste from the solvent extraction processes. To minimize the radioactive waste, we have conducted research and development of the new reprocessing and MA separation processes using innovative extractants in accord with CHON principle. The extractants for reprocessing process are monoamides as alternative extractants for TBP. For An(III)+RE recovery process, we developed TDdDGA. HONTA and ADAAM were developed for An(III)/RE separation process and Am/Cm separation process respectively. The separation performances of the flowsheets were evaluated by continuous extraction tests using simulated and genuine spent fuel and high level liquid waste.

Oral presentation

R&D of MA separation processes for P&T system using ADS, 7; Examination of novel extractants for MA separation

Suzuki, Hideya; Tsubata, Yasuhiro; Shibata, Mitsunobu; Kurosawa, Tatsuya; Kawasaki, Tomohiro; Sagawa, Hiroshi; Matsumura, Tatsuro

no journal, , 

JAEA continues to carry out the development of the ADS(Double-strata). Mutual separation of Am(III) and Cm(III) is important for the development of the partitioning process. The separation is particularly difficult, because they have the analogous chemical behavior. Alkyl diamide amine (ADAAM), a new high-performance reagent with a simple structure, was examined for the mutual separation of Am(III) and Cu(III). The combination of ADAAM and N,N,N',N'-tetraethyldiglycolamide (TEDGA) as a masking agent shows selectivity for Am(III) over Cm(III) in highly acidic media with separation factors up to 41.

Oral presentation

R&D of MA separation processes for P&T system using ADS, 6; Development of MA recovery process with TDdDGA

Matsumura, Tatsuro; Suzuki, Hideya; Tsubata, Yasuhiro; Shibata, Mitsunobu; Kurosawa, Tatsuya; Kawasaki, Tomohiro; Sagawa, Hiroshi

no journal, , 

no abstracts in English

Oral presentation

R&D of MA separation processes for P&T system using ADS, 8; Examination of novel extractants for MA/RE separation

Suzuki, Hideya; Sasaki, Yuji; Tsubata, Yasuhiro; Shibata, Mitsunobu; Kurosawa, Tatsuya; Kawasaki, Tomohiro; Sagawa, Hiroshi; Matsumura, Tatsuro

no journal, , 

Hexaalkyl-nitrilotriacetamide (NTAamide) was evaluated for the separation of MA(III) and RE(III). NTAamide is a multidentate ligand comprising one soft N-donor atom and three hard O-donor atoms as part of its central frame. This tetradentate set of donor atoms provide selective binding for Am(III) and Nd(III) and yield separation factors of up to 3.7. A continuous liquid liquid extraction and stripping process were performed using Hexaoctyl-NTAamide (HONTA) in n-dodecane as the extractant in a multistage countercurrent mixer-settler extractor. Separation of MA(III) and RE(III) in high yield was demonstrated.

Oral presentation

R&D of MA separation processes for P&T system using ADS, 9; Examination of novel extractants for MA/RE separation

Suzuki, Hideya; Yamashita, Kiyoto*; Murayama, Rin*; Ban, Yasutoshi; Shibata, Mitsunobu; Kurosawa, Tatsuya*; Kawasaki, Tomohiro; Sagawa, Hiroshi*; Sasaki, Yuji; Matsumura, Tatsuro

no journal, , 

Hexaalkyl-nitrilotriacetamide (NTAamide) was evaluated for the separation of MA(III) and RE(III). NTAamide is a tetradentate ligand with one soft central N-donor atom and three hard carbonyl O-donor atoms in its skeleton. NTAamide was tested for the removal of MA(III) and RE(III) from HNO$$_{3}$$ into n-dodecane. MA(III) and RE(III) separation was demonstrated with a high yield through the extraction process using NTAamide. This study shows that NTAamide is a highly practical, high-performance extractant for partitioning MA(III) from RE(III).

Oral presentation

Examination of novel extractants for MA separation

Suzuki, Hideya; Tsubata, Yasuhiro; Ban, Yasutoshi; Shibata, Mitsunobu*; Kurosawa, Tatsuya*; Kawasaki, Tomohiro*; Matsumura, Tatsuro

no journal, , 

The authors have developed a new extractant for the separation of minor actinide (MA) from high-level liquid waste (HLLW). Tetra-2-ethylhexyldiglycolamide (TEHDGA) has four branched alkyl chains and has high solubility in diluents. Furthermore, TEHDGA has high selectivity of MA from fission products, high extraction capacity, fast extraction kinetics, fast phase separation, and low cost. TEHDGA is a highly practical extractant for partitioning MA from HLLW.

Oral presentation

Current status of R&D on minor actinide separation process with CHON Extractants in JAEA

Matsumura, Tatsuro; Ban, Yasutoshi; Suzuki, Hideya; Tsubata, Yasuhiro; Hotoku, Shinobu; Tsutsui, Nao; Suzuki, Asuka; Toigawa, Tomohiro; Kurosawa, Tatsuya*; Shibata, Mitsunobu*; et al.

no journal, , 

To continue the utilization of the nuclear fission energy, the management of the high-level radioactive waste is one of the most important issues to be solved. Partitioning and Transmutation technology is expected to be effective to mitigate the burden of the HLW disposal by reducing the radiological toxicity and heat generation. JAEA has been conducting R&D on the MA separation process to remove of MA from HLW and supply the recovered MA to the transmutation system such as ADS. The MA separation process contains three steps. For An(III)+RE recovery process, we developed TDdDGA which has very high performance to recover of MA from high level waste. HONTA and ADAAM were developed for An(III)/RE separation process and Am/Cm separation process respectively. All extractants satisfy CHON principle to minimization of the secondary waste from the process. The separation performances of the flowsheets were evaluated by continuous extraction tests using simulated and genuine high level liquid waste.

Oral presentation

Development of a new extraction method for americium separation from high-level liquid waste, 2

Suzuki, Hideya*; Ban, Yasutoshi; Hotoku, Shinobu; Morita, Keisuke; Tsutsui, Nao; Kurosawa, Tatsuya*; Shibata, Mitsunobu*; Kawasaki, Tomohiro*; Matsumura, Tatsuro

no journal, , 

The Japan Atomic Energy Agency (JAEA) has been studying partitioning technology. Recently, JAEA proposed a new liquid-liquid extraction technology called SELECT (Solvent Extraction from Liquid-waste using Extractants of CHON-type for Transmutation) process to separate minor actinide (MA) from high-level liquid waste (HLLW) for transmutation. In this process, new extractants (HONTA, ADAAM) with highly practical and high extraction ability for MA was developed. In the present study, a new solvent extraction method using a mixture of HONTA and ADAAM was investigated. In the tests, it was found that the separation of Am from the simulated HLLW was achieved with very high yield.

Oral presentation

Solvent extraction process for reprocessing and minor actinides separation using CHON ligands

Matsumura, Tatsuro; Ban, Yasutoshi; Suzuki, Hideya; Tsubata, Yasuhiro; Hotoku, Shinobu; Tsutsui, Nao; Suzuki, Asuka; Toigawa, Tomohiro; Kurosawa, Tatsuya*; Shibata, Mitsunobu*; et al.

no journal, , 

PUREX process was established for industrial scale reprocessing plant. TRUEX and the 4 group separation were developed for partitioning of minor actinides from high level liquid waste from reprocessing process, and demonstrated by the continuous extraction test using genuine high level liquid waste. Although the extractants for reprocessing and MA separation processes, such as tri-n-butyl phosphate (TBP), n-octyl(phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and diisodecylphosphoric acid (DIDPA), have excellent performance for recovery of U, Pu or MA, the molecules contain phosphorus which could be cause for the secondary waste from the solvent extraction processes. To minimize the radioactive waste from nuclear fuel cycle, we have conducted research and development of the new reprocessing and MA separation processes using innovative extractants in accord with CHON principle.

Oral presentation

Investigation of new extractants for MA separation

Suzuki, Hideya; Tsubata, Yasuhiro; Kurosawa, Tatsuya*; Kawasaki, Tomohiro*; Shibata, Mitsunobu*; Matsumura, Tatsuro

no journal, , 

The authors have developed new extractants for the separation of minor actinide (MA) from high-level liquid waste. Tetra-2-ethyldecyldiglycolamide (TEDDGA) has four branched alkyl chains and high selectivity of MA from fission products. Furthermore, TEDDGA has high solubility in diluents, high extraction capacity, and fast phase separation.

Oral presentation

R&D of MA separation processes for P&T system using ADS, 3; Counter-current continuous extraction tests of MA-Ln recovery process

Urabe, Shunichi; Tsubata, Yasuhiro; Suzuki, Hideya; Shibata, Mitsunobu; Kurosawa, Tatsuya; Kawasaki, Tomohiro; Matsumura, Tatsuro

no journal, , 

JAEA continues to carry out the development of the ADS (Double-strata). Mutual separation of MA and Ln is important for the development of the partitioning process. TDdDGA was performed using a mixer-settler equipment for the development of the separation process for MA. TDdDGA has a high extraction capacity. TDdDGA consists of C, H, O and N atoms (the CHON-principle). In this experiment, the feed solution as simulated HLLW contained fourteen elements. The results of the counter-current test showed that Am was extracted and was recovered in a high yield.

Oral presentation

Research and development of the "SELECT process" for actinide separation

Matsumura, Tatsuro; Ban, Yasutoshi; Hotoku, Shinobu; Suzuki, Hideya; Tsubata, Yasuhiro; Tsutsui, Nao; Morita, Keisuke; Toigawa, Tomohiro; Shibata, Mitsunobu*; Kurosawa, Tatsuya*; et al.

no journal, , 

no abstracts in English

Oral presentation

Development of a new extraction method for minor actinide separation

Suzuki, Hideya*; Ban, Yasutoshi; Tsubata, Yasuhiro; Hotoku, Shinobu; Tsutsui, Nao; Kurosawa, Tatsuya*; Shibata, Mitsunobu*; Kawasaki, Tomohiro*; Matsumura, Tatsuro

no journal, , 

A highly practical hybrid-type (soft ${it N}$-donor and hard ${it O}$-donor) extractant, which is an alkyldiamideamine (ADAAM), was investigated for the minor actinides (MA) separation. The new process aims at recovering americium (Am) alone from high-level waste liquid (HLLW) using an ADAAM. The principle of the process is based on the extraction of Am together with light lanthanides (La, Ce, Pr and Nd) and Mo having close values of distribution ratio, while curium, other lanthanides, and other fission products remain in the aqueous phase. The Am was subsequently selectively stripped from the light lanthanides and Mo using mixed solution (DTPA, malonic acid and ammonium nitrate). As a result, Am was directly separated from the simulated HLLW with high yield (95%).

Oral presentation

Development of new extraction methods for minor actinide separation

Suzuki, Hideya*; Ban, Yasutoshi; Tsubata, Yasuhiro; Tsutsui, Nao; Toigawa, Tomohiro; Kurosawa, Tatsuya*; Shibata, Mitsunobu*; Kawasaki, Tomohiro*; Matsumura, Tatsuro

no journal, , 

The Japan Atomic Energy Agency (JAEA) has been studying partitioning technology. Recently, JAEA proposed a new liquid-liquid extraction technology called SELECT process to separate minor actinide (MA) from high-level liquid waste for transmutation. In this process, new extractants (HONTA, ADAAM) with highly practical and high extraction ability for MA was developed. A mixed solvent of HONTA and ADAAM was tested for mutual separation of MA and rare earth elements (RE). In this test, separation of MA and RE was achieved with very high yield. Furthermore, Americium (Am) and Curium (Cm) were separated efficiently with high separation factor values.

Oral presentation

Development of a new extraction method for MA separation

Suzuki, Hideya*; Ban, Yasutoshi; Tsubata, Yasuhiro; Hotoku, Shinobu; Toigawa, Tomohiro; Tsutsui, Nao; Shibata, Mitsunobu*; Kurosawa, Tatsuya*; Kawasaki, Tomohiro*; Matsumura, Tatsuro

no journal, , 

The Japan Atomic Energy Agency has been studying partitioning and transmutation (P&T) systems. In the P&T, the separation of minor actinides (MAs) from the chemically similar lanthanides is the key step. After MAs are separated from high-level waste, the mutual separation of Am and Cm (Am/Cm separation) can be conducted. Therefore, the removal of the pyrogenic Cm nuclide would reduce the difficulties associated with MA-fuel fabrication. However, Am/Cm separation is very challenging because the two elements have similar chemical and physical properties. Highly practical a new reagent, called ADAAM have been developed. The Am is subsequently selectively stripped from the light lanthanides. As a result, Am was separated with high efficiency.

29 (Records 1-20 displayed on this page)