Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Parameter optimization for urban wind simulation using ensemble Kalman filter

Onodera, Naoyuki; Idomura, Yasuhiro; Hasegawa, Yuta; Asahi, Yuichi; Inagaki, Atsushi*; Shimose, Kenichi*; Hirano, Kohin*

Keisan Kogaku Koenkai Rombunshu (CD-ROM), 28, 4 Pages, 2023/05

We have developed a multi-scale wind simulation code named CityLBM that can resolve entire cities to detailed streets. CityLBM enables a real time ensemble simulation for several km square area by applying the locally mesh-refined lattice Boltzmann method on GPU supercomputers. On the other hand, real-world wind simulations contain complex boundary conditions that cannot be modeled, so data assimilation techniques are needed to reflect observed data in the simulation. This study proposes an optimization method for ground surface temperature bias based on an ensemble Kalman filter to reproduce wind conditions within urban city blocks. As a verification of CityLBM, an Observing System Simulation Experiment (OSSE) is conducted for the central Tokyo area to estimate boundary conditions from observed near-surface temperature values.

Oral presentation

Urban wind database for immediate high-resolution prediction

Onodera, Naoyuki; Hasegawa, Yuta; Idomura, Yasuhiro; Asahi, Yuichi; Kawamura, Takuma; Ina, Takuya; Shimomura, Kazuya; Inagaki, Atsushi*; Suzuki, Shinichi*; Hirano, Kohin*; et al.

no journal, , 

Wind prediction based on digital twin is a promising technology that can contribute to the construction of new social infrastructures, including applications to smart city design and operation. In this poster presentation, we will introduce wind simulations based on data assimilation with observations and mesoscale meteorological data for the realization of a digital twin of wind conditions in urban areas.

Oral presentation

Development of data assimilation methods and observation systems for a wind digital twin in urban areas

Onodera, Naoyuki; Shimokawabe, Takashi*; Idomura, Yasuhiro; Kawamura, Takuma; Asahi, Yuichi; Hasegawa, Yuta; Ina, Takuya; Shimomura, Kazuya; Inagaki, Atsushi*; Hirano, Kohin*; et al.

no journal, , 

The project goal is to realize real-time wind prediction in urban areas by assimilating observed data into real-time wind simulations on GPU supercomputers. In FY2022, the first year of the project, we developed a dynamic optimization method for model variables by applying a particle filter (PF) based data assimilation method to reproduce wind conditions in the atmospheric boundary layer with high accuracy. The numerical simulations for the field experiment in Oklahoma City showed improvements of about 10 % for the standard deviation error of the all-day velocity compared to the results without the application of PF. In addition, a multi-scale analysis based on boundary conditions given by a geographic information system (GIS) and a cloud-resolving numerical model (CReSS) was realized for the Tokyo metropolitan area.

Oral presentation

Large-eddy simulation of metropolitan Tokyo using locally mesh-refined lattice Boltzmann method

Onodera, Naoyuki; Idomura, Yasuhiro; Hasegawa, Yuta; Asahi, Yuichi; Inagaki, Atsushi*; Shimose, Kenichi*; Hirano, Kohin*

no journal, , 

Our research group has been developing a multi-scale wind simulation code, CityLBM, which covers a wide area including the entire city as well as small alleys. CityLBM can perform real-time simulations by applying the AMR method and GPU acceleration to the lattice Boltzmann method. This study performed a meter-resolution simulation of the area around the Tokyo Institute of Technology. The simulation results were compared with the Doppler lidar observations, and it was confirmed that the simulation reproduced the wind conditions well, even under the conditions of large changes in the main wind direction during the day.

4 (Records 1-4 displayed on this page)
  • 1