Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 31

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Numerical evaluation on fluctuation absorption characteristics based on nuclear heat supply fluctuation test using HTTR

Takada, Shoji; Honda, Yuki*; Inaba, Yoshitomo; Sekita, Kenji; Nemoto, Takahiro; Tochio, Daisuke; Ishii, Toshiaki; Sato, Hiroyuki; Nakagawa, Shigeaki; Sawa, Kazuhiro*

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 7 Pages, 2018/10

Nuclear heat utilization systems connected to HTGRs will be designed on the basis of non-nuclear grade standards for easy entry of chemical plant companies, requiring reactor operations to continue even if abnormal events occur in the systems. The inventory control is considered as one of candidate methods to control reactor power for load following operation for siting close to demand area, in which the primary gas pressure is varied while keeping the reactor inlet and outlet coolant temperatures constant. Numerical investigation was carried out based on the results of nuclear heat supply fluctuation tests using HTTR by non-nuclear heating operation to focus on the temperature transient of the reactor core bottom structure by imposing stepwise fluctuation on the reactor inlet temperature under different primary gas pressures below 120C. As a result, it was emerged that the fluctuation absorption characteristics are not deteriorated by lowering pressure. It was also emerged that the reactor outlet temperature did not reach the scram level by increasing the reactor inlet temperature 10 C stepwise at 80% of the rated power as same with the full power case.

Journal Articles

Nuclear heat supply fluctuation tests by non-nuclear heating with HTTR

Inaba, Yoshitomo; Sekita, Kenji; Nemoto, Takahiro; Honda, Yuki; Tochio, Daisuke; Sato, Hiroyuki; Nakagawa, Shigeaki; Takada, Shoji; Sawa, Kazuhiro

Journal of Nuclear Engineering and Radiation Science, 2(4), p.041001_1 - 041001_7, 2016/10

The nuclear heat utilization systems connected to High Temperature Gas-cooled Reactors (HTGRs) will be designed on the basis of non-nuclear grade standards in terms of the easier entry of chemical plant companies and the construction economics of the systems. Therefore, it is necessary that the reactor operations can be continued even if abnormal events occur in the systems. The Japan Atomic Energy Agency has developed a calculation code to evaluate the absorption of thermal load fluctuations by the reactors when the reactor operations are continued after such events, and has improved the code based on the High Temperature engineering Test Reactor (HTTR) operating data. However, there were insufficient data on the transient temperature behavior of the metallic core side components and the graphite core support structures corresponding to the fluctuation of the reactor inlet coolant temperature for further improvement of the code. Thus, nuclear heat supply fluctuation tests with the HTTR were carried out in non-nuclear heating operation to focus on thermal effect. In the tests, the coolant helium gas temperature was heated up to 120$$^{circ}$$C by the compression heat of the gas circulators in the HTTR, and a sufficiently high fluctuation of 17$$^{circ}$$C by devising a new test procedure was imposed on the reactor inlet coolant under the ideal condition without the effect of the nuclear power. Then, the temperature responses of the metallic core side components and the graphite core support structures were investigated. The test results adequately showed as predicted that the temperature responses of the metallic components are faster than those of the graphite structures, and the mechanism of the thermal load fluctuation absorption by the metallic components was clarified.

Journal Articles

Progress in long-pulse production of powerful negative ion beams for JT-60SA and ITER

Kojima, Atsushi; Umeda, Naotaka; Hanada, Masaya; Yoshida, Masafumi; Kashiwagi, Mieko; Tobari, Hiroyuki; Watanabe, Kazuhiro; Akino, Noboru; Komata, Masao; Mogaki, Kazuhiko; et al.

Nuclear Fusion, 55(6), p.063006_1 - 063006_9, 2015/06

 Times Cited Count:41 Percentile:89.45(Physics, Fluids & Plasmas)

Significant progresses in the extension of pulse durations of powerful negative ion beams have been made to realize the neutral beam injectors for JT-60SA and ITER. In order to overcome common issues of the long pulse production/acceleration of negative ion beams in JT-60SA and ITER, the new technologies have been developed in the JT-60SA ion source and the MeV accelerator in Japan Atomic Energy Agency. As for the long pulse production of high-current negative ions for JT-60SA ion source, the pulse durations have been successfully increased from 30 s at 13 A on JT-60U to 100 s at 15 A by modifying the JT-60SA ion source, which satisfies the required pulse duration of 100 s and 70% of the rated beam current for JT-60SA. This progress was based on the R&D efforts for the temperature control of the plasma grid and uniform negative ion productions with the modified tent-shaped filter field configuration. Moreover, the each parameter of the required beam energy, current and pulse has been achieved individually by these R&D efforts. The developed techniques are useful to design the ITER ion source because the sustainment of the cesium coverage in large extraction area is one of the common issues between JT-60SA and ITER. As for the long pulse acceleration of high power density beams in the MeV accelerator for ITER, the pulse duration of MeV-class negative ion beams has been extended by more than 2 orders of magnitude by modifying the extraction grid with a high cooling capability and a high-transmission of negative ions. A long pulse acceleration of 60 s has been achieved at 70 MW/m$$^{2}$$ (683 keV, 100 A/m$$^{2}$$) which has reached to the power density of JT-60SA level of 65 MW/m$$^{2}$$.

Journal Articles

Nuclear heat supply fluctuation test by non-nuclear heating using HTTR

Takada, Shoji; Sekita, Kenji; Nemoto, Takahiro; Honda, Yuki; Tochio, Daisuke; Inaba, Yoshitomo; Sato, Hiroyuki; Nakagawa, Shigeaki; Sawa, Kazuhiro

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05

To investigate the safety design criteria of heat utilization system for the HTGRs, it is necessary to evaluate the effect of fluctuation of thermal load on the reactor. The nuclear heat supply fluctuation test by non-nuclear heating was carried out to simulate the nuclear heat supply test which is carried out in the nuclear powered operation. The test data is used to verify the numerical code to calculate the temperature of core bottom structure to carry out the safety evaluation of abnormal events in the heat utilization system. In the test, the helium gas temperature was heated up to 120$$^{circ}$$C. A sufficiently high temperature disturbance was imposed on the reactor inlet temperature. It was found that the response of temperatures of metallic components such as side shielding blocks was faster than those of graphite blocks in the core bottom structure, which was significantly affected by the heat capacities of components, the level of imposed disturbance and heat transfer performance.

Journal Articles

Progress in development and design of the neutral beam injector for JT-60SA

Hanada, Masaya; Kojima, Atsushi; Tanaka, Yutaka; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Tobari, Hiroyuki; Umeda, Naotaka; Akino, Noboru; et al.

Fusion Engineering and Design, 86(6-8), p.835 - 838, 2011/10

 Times Cited Count:13 Percentile:69.42(Nuclear Science & Technology)

Neutral beam (NB) injectors for JT-60 Super Advanced (JT-60SA) have been designed and developed. Twelve positive-ion-based and one negative-ion-based NB injectors are allocated to inject 30 MW D$$^{0}$$ beams in total for 100 s. Each of the positive-ion-based NB injector is designed to inject 1.7 MW for 100s at 85 keV. A part of the power supplies and magnetic shield utilized on JT-60U are upgraded and reused on JT-60SA. To realize the negative-ion-based NB injector for JT-60SA where the injection of 500 keV, 10 MW D$$^{0}$$ beams for 100s is required, R&Ds of the negative ion source have been carried out. High-energy negative ion beams of 490-500 keV have been successfully produced at a beam current of 1-2.8 A through 20% of the total ion extraction area, by improving voltage holding capability of the ion source. This is the first demonstration of a high-current negative ion acceleration of $$>$$1 A to 500 keV. The design of the power supplies and the beamline is also in progress. The procurement of the acceleration power supply starts in 2010.

Journal Articles

Development of the JT-60SA Neutral Beam Injectors

Hanada, Masaya; Kojima, Atsushi; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Tobari, Hiroyuki; Umeda, Naotaka; Akino, Noboru; Kazawa, Minoru; et al.

AIP Conference Proceedings 1390, p.536 - 544, 2011/09

 Times Cited Count:7 Percentile:84.66(Physics, Atomic, Molecular & Chemical)

no abstracts in English

Journal Articles

Achievement of 500 keV negative ion beam acceleration on JT-60U negative-ion-based neutral beam injector

Kojima, Atsushi; Hanada, Masaya; Tanaka, Yutaka*; Kawai, Mikito*; Akino, Noboru; Kazawa, Minoru; Komata, Masao; Mogaki, Kazuhiko; Usui, Katsutomi; Sasaki, Shunichi; et al.

Nuclear Fusion, 51(8), p.083049_1 - 083049_8, 2011/08

 Times Cited Count:51 Percentile:88.18(Physics, Fluids & Plasmas)

Hydrogen negative ion beams of 490 keV, 3 A and 510 keV, 1 A have been successfully produced in the JT-60 negative ion source with three acceleration stages. These successful productions of the high-energy beams at high current have been achieved by overcoming the most critical issue, i.e., a poor voltage holding of the large negative ion sources with the grids of 2 m$$^{2}$$ for JT-60SA and ITER. To improve voltage holding capability, the breakdown voltages for the large grids was examined for the first time. It was found that a vacuum insulation distance for the large grids was 6-7 times longer than that for the small-area grid (0.02 m$$^{2}$$). From this result, the gap lengths between the grids were tuned in the JT-60 negative ion source. The modification of the ion source also realized a significant stabilization of voltage holding and a short conditioning time. These results suggest a practical use of the large negative ion sources in JT-60SA and ITER.

Journal Articles

Demonstration of 500 keV beam acceleration on JT-60 negative-ion-based neutral beam injector

Kojima, Atsushi; Hanada, Masaya; Tanaka, Yutaka*; Kawai, Mikito*; Akino, Noboru; Kazawa, Minoru; Komata, Masao; Mogaki, Kazuhiko; Usui, Katsutomi; Sasaki, Shunichi; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Hydrogen negative ion beams of 490keV, 3A and 510 keV, 1A have been successfully produced in the JT-60 negative ion source with three acceleration stages. These successful productions of the high-energy beams at high current have been achieved by overcoming the most critical issue, i.e., a poor voltage holding of the large negative ion sources with the grids of $$sim$$ 2 m$$^{2}$$ for JT-60SA and ITER. To improve voltage holding capability, the breakdown voltages for the large grids was examined for the first time. It was found that a vacuum insulation distance for the large grids was 6-7 times longer than that for the small-area grid (0.02 m$$^{2}$$). From this result, the gap lengths between the grids were tuned in the JT-60 negative ion source. The modification of the ion source also realized a significant stabilization of voltage holding and a short conditioning time. These results suggest a practical use of the large negative ion sources in JT-60 SA and ITER.

Journal Articles

Development and design of the negative-ion-based NBI for JT-60 Super Advanced

Hanada, Masaya; Akino, Noboru; Endo, Yasuei; Inoue, Takashi; Kawai, Mikito; Kazawa, Minoru; Kikuchi, Katsumi; Komata, Masao; Kojima, Atsushi; Mogaki, Kazuhiko; et al.

Journal of Plasma and Fusion Research SERIES, Vol.9, p.208 - 213, 2010/08

A large negative ion source with an ion extraction area of 110 cm $$times$$ 45 cm has been developed to produce 500 keV, 22 A D$$^{-}$$ ion beams required for JT-60 Super Advanced. To realize the JT-60SA negative ion source, the JT-60 negative ion source has been modified and tested on the negative-ion-based neutral beam injector on JT-60U. A 500 keV H$$^{-}$$ ion beam has been produced at 3 A without a significant degradation of beam optics. This is the first demonstration of a high energy negative ion acceleration of more than one-ampere to 500 keV in the world. The beam current density of 90 A/m$$^{2}$$ is being increased to meet 130 A/m$$^{2}$$ of the design value for JT-60SA by tuning the operation parameters. A long pulse injection of 30 s has been achieved at a injection D$$^{0}$$ power of 3 MW. The injection energy, defined as the product of the injection time and power, reaches 80 MJ by neutralizing a 340 keV, 27 A D$$^{-}$$ ion beam produced with two negative ion sources.

JAEA Reports

An Irradiation test of heat-resistant ceramic composite materials, 2; Interim report on post-irradiation examinations of the second and third preliminary test, 98M-41A, 99M-30A

Baba, Shinichi; Nemoto, Makoto*; Sozawa, Shizuo; Yamaji, Masatoshi*; Ishihara, Masahiro; Sawa, Kazuhiro

JAERI-Tech 2005-055, 157 Pages, 2005/09

JAERI-Tech-2005-055.pdf:19.06MB

The Japan Atomic Energy Research Institute (JAERI) has been carrying out the research on radiation damage mechanism of heat-resistant ceramics composite materials, as one of the subjects of the innovative basic research on high temperature engineering using the High Temperature Engineering Test Reactor (HTTR). A series of preliminary irradiation tests is being made using the Japan Materials Testing Reactor (JMTR). The present report describes results of post-irradiation examinations so far on specimens irradiated in the second and third capsule, designated 98M-41A and 99M-30A, to fast neutron fluences of 1.0$$times$$10$$^{25}$$m$$^{-2}$$(E$$>$$1MeV) at temperatures of 973K-1173K and 1273K-1473K. The PIE were conducted as the fundamental statistics index of the diametral dimensions for irradiated specimen, irradiation induced dimensional change rate and thermal expansion rate.

Journal Articles

Determination of Uranium, Curium and Plutonium in the Hulls

Kuno, Takehiko; Okano, Masanori; Sato, Soichi; *; Jitsukata, Shu*

Final Program Abst. P.60, 60 Pages, 2003/00

Journal Articles

Heating and non-inductive current drive by negative ion based NBI in JT-60U

Oikawa, Toshihiro; Ushigusa, Kenkichi; Forest, C. B.*; Nemoto, Masahiro; Naito, Osamu; Kusama, Yoshinori; Kamada, Yutaka; Tobita, Kenji; Suzuki, Shingo*; Fujita, Takaaki; et al.

Nuclear Fusion, 40(3Y), p.435 - 443, 2000/03

 Times Cited Count:41 Percentile:74.83(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Heating and non-inductive current drive by negative-ion based NBI in JT-60U

Oikawa, Toshihiro; Ushigusa, Kenkichi; Forest, C. B.*; Nemoto, Masahiro; Naito, Osamu; Kusama, Yoshinori; Kamada, Yutaka; Tobita, Kenji; Suzuki, Shingo*; Fujita, Takaaki; et al.

Fusion Energy 1998, Vol.2, p.551 - 558, 1998/10

no abstracts in English

Journal Articles

Calibration of active beam scattering system and its application of JT-60

Tobita, Kenji; Kusama, Yoshinori; Nemoto, Masahiro; Takeuchi, Hiroshi; Ito, Takao; Tsukahara, Yoshimitsu; Shitomi, Morimasa; Watanabe, Kazuhiro; Ohara, Yoshihiro

Kaku Yugo Kenkyu, 59(SPECIAL ISSUE), p.139 - 156, 1988/00

no abstracts in English

JAEA Reports

None

*; *; *; *; *; *

PNC TN936 81-11, 15 Pages, 1981/12

PNC-TN936-81-11.pdf:0.3MB

None

JAEA Reports

None

*; *; *; *; *; *

PNC TN936 81-10, 15 Pages, 1981/11

PNC-TN936-81-10.pdf:0.32MB

None

JAEA Reports

None

*; *; *; *; Namekawa, Masaru; *; *; *; *

PNC TN936 80-06, 21 Pages, 1980/07

PNC-TN936-80-06.pdf:0.55MB

None

JAEA Reports

None

*; *; *; *; Namekawa, Masaru; *; *; *; *

PNC TN936 80-05, 18 Pages, 1980/06

PNC-TN936-80-05.pdf:0.44MB

None

JAEA Reports

None

*; *; Namekawa, Masaru; *; *; *

PNC TN936 79-12, 24 Pages, 1980/01

PNC-TN936-79-12.pdf:0.49MB

None

JAEA Reports

None

*; *; *; *; Namekawa, Masaru; *

PNC TN936 79-11, 18 Pages, 1979/12

PNC-TN936-79-11.pdf:0.5MB

None

31 (Records 1-20 displayed on this page)