Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Oral presentation

In-situ experiment of shotcrete using low alkaline cement in Horonobe Underground Research Laboratory, 4; Mass transport property of low alkaline shotcrete and Rock in Horonobe URL

Miyahara, Shigeyohi*; Okamoto, Reiko*; Takeda, Hitoshi*; Nakayama, Masashi; Sato, Haruo; Ito, Seiji

no journal, , 

In Japan, any high level radioactive waste repository is to be constructed at over 300m depth below surface. Tunnel support is used for safety during the construction and operation, and shotcrete and concrete lining are used as the tunnel support. Concrete is a composite material comprised of aggregate, cement and various additives. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. Japan Atomic Energy Agency (JAEA) has developed a low alkaline cement, named as HFSC (High fly-ash silicafume cement), containing over 60wt% of silica-fume (SF) and coal ash (FA). JAEA are presently constructing an underground research laboratory (URL) at Horonobe for research and development in the geosciences and repository engineering technology. HFSC was used experimentally as the shotcrete material in construction of part of the 140m deep gallery in Horonobe URL. The objective of this experiment was to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. HFSC used in this experiment is composed of 40wt% OPC (Ordinary Portland Cement), 20wt% SF, and 40wt% FA. This composition was determined based on mechanical testing of various mixes of the above components. Because of the low OPC content, the strength of HFSC tends to be lower than that of OPC in normal concrete. The total length of tunnel using HFSC shotcrete is about 73m and about 500m$$^{3}$$ of HFSC was used. This experimental construction confirmed the workability of HFSC shotcrete. Although several in-situ experiments using low alkaline cement as shotcrete have been performed at a small scale, this application of HFSC at the Horonobe URL is the first full scale application of low alkaline cement in the construction of a URL in the world.

Oral presentation

In-situ experiment of shotcrete using low alkaline cement in Horonobe Underground Research Laboratory, 3; Chemical property of low alkaline shotcrete and rock

Okamoto, Reiko*; Miyahara, Shigeyohi*; Takeda, Hitoshi*; Nakayama, Masashi; Sato, Haruo; Ito, Seiji

no journal, , 

In Japan, any high level radioactive waste repository is to be constructed at over 300m depth below surface. Tunnel support is used for safety during the construction and operation, and shotcrete and concrete lining are used as the tunnel support. Concrete is a composite material comprised of aggregate, cement and various additives. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. Japan Atomic Energy Agency (JAEA) has developed a low alkaline cement, named as HFSC (High fly-ash silicafume cement), containing over 60wt% of silica-fume (SF) and coal ash (FA). JAEA are presently constructing an underground research laboratory (URL) at Horonobe for research and development in the geosciences and repository engineering technology. HFSC was used experimentally as the shotcrete material in construction of part of the 140m deep gallery in Horonobe URL. The objective of this experiment was to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. HFSC used in this experiment is composed of 40wt% OPC (Ordinary Portland Cement), 20wt% SF, and 40wt% FA. This composition was determined based on mechanical testing of various mixes of the above components. Because of the low OPC content, the strength of HFSC tends to be lower than that of OPC in normal concrete. The total length of tunnel using HFSC shotcrete is about 73m and about 500m$$^{3}$$ of HFSC was used. This experimental construction confirmed the workability of HFSC shotcrete. Although several in-situ experiments using low alkaline cement as shotcrete have been performed at a small scale, this application of HFSC at the Horonobe URL is the first full scale application of low alkaline cement in the construction of a URL in the world.

Oral presentation

Structure analysis of resin-filler compounds by small-angle neutron scattering

Yamaguchi, Daisuke; Koizumi, Satoshi; Ojima, Hitoshi*; Isoyama, Ryo*; Ishiwatari, Yoshiyuki*; Kodama, Hiroto*; Takeda, Hisanori*; Fukita, Hitoshi*; Takashima, Yoshiyuki*

no journal, , 

Resin-filler composites were investigated by small-angle neutron scattering (SANS). Two types of fillers, talc and TiO$$_{2}$$, were employed and compounded with polypropylene in this study. The dispersion state of the fillers was examined by SANS measurements. In addition, the size distribution of the fillers was separately measured through the laser right scattering and SEM. The calculated scattering function including the polydispersity of fillers whose size distribution reflects the results of laser right scattering and SEM consistently reproduced the experimental SANS scattering profiles.

Oral presentation

Study of the erosion behavior of backfill material for geological disposal

Kimura, Shun; Takeda, Masaki; Okihara, Mitsunobu*; Nakashima, Hitoshi*; Chijimatsu, Masakazu*; Ito, Ayumu*

no journal, , 

no abstracts in English

4 (Records 1-4 displayed on this page)
  • 1