Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 596

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Neutron transmission imaging system with a superconducting kinetic inductance detector

Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Soyama, Kazuhiko; Koyama, Tomio*; et al.

Journal of Physics; Conference Series, 2776, p.012009_1 - 012009_9, 2024/06

Journal Articles

Analysis of fuel assemblies inclination due to upper core support plate deflection for reactivity evaluation

Yoshimura, Kazuo; Doda, Norihiro; Igawa, Kenichi*; Uwaba, Tomoyuki; Tanaka, Masaaki; Nemoto, Toshiyuki*

Transactions of the 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT 27) (Internet), 8 Pages, 2024/03

To investigate possibility of the insertion of the reactivity by the deflection of the upper core support plate, structural mechanics analyses of the domain consisting of the fuel assemblies and core support plates and evaluation of the reactivity due to the inclination of the fuel assemblies in EBR-II were carried out. As a result, it was indicated that the upper core support plate deflected downward larger at the low flowrate condition than that at the high flowrate condition and positive reactivity was inserted due to the inclination of the fuel assemblies at the low flowrate condition.

Journal Articles

Neutron transmission CB-KID imager using samples placed at room temperature

Ishida, Takekazu*; Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Koyama, Tomio*; et al.

Journal of Low Temperature Physics, 214(3-4), p.152 - 157, 2024/02

 Times Cited Count:0 Percentile:0.01(Physics, Applied)

Journal Articles

Development of virtual plant model for design rationalization of fast reactors by multi-level simulation system; Confirmation of functionality in application to U.S. experimental fast reactor EBR-II

Yoshimura, Kazuo; Doda, Norihiro; Nakamine, Yoshiaki*; Fujisaki, Tatsuya*; Igawa, Kenichi*; Iida, Masaki*; Tanaka, Masaaki

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2023/09

In Japan Atomic Energy Agency, a virtual plant model of the sodium-cooled fast reactor plant composed in a computer is being developed to reduce the development cost, by replacing the experiments to the numerical simulations with coupled analyses of the physical phenomena accounting for the interaction between components under various plant conditions. Through the numerical analysis of the ULOHS test in the U.S. experimental fast reactor named EBR-II, applicability of the virtual plant model was confirmed in comparison with the measured data including the core inlet temperature and the reactor power.

Journal Articles

Validation of gas entrainment evaluation method in simplified hot plenum model of sodium cooled fast reactor

Ezure, Toshiki; Akimoto, Yuta; Matsushita, Kentaro; Tanaka, Masaaki

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2023/09

In hot plenums of sodium-cooled fast reactors, restriction of cover gas entrainment caused by vortex dimples on the free surface is an important thermal-hydraulic issue. For this reason, the authors have developed an evaluation method of gas entrainment with an evaluation tool named, StreamViewer. In this study, evaluation using StreamViewer was applied to a water experiment having a simplified hot pool geometry aiming at the validation of the evaluation method toward the application to the evaluation of a pool-type sodium cooled fast reactor. In StreamViewer, the three-dimensional distribution of pressure decrease along the vortex center line was calculated from the velocity distribution obtained by CFD analyses, and the free surface dimple depth was obtained from the hydraulic balance with the pressure distribution and the cover gas pressure. As the results, it was confirmed that the onset of gas entrainment could be predicted appropriately based on the above-mentioned calculation method.

Journal Articles

Orientation mapping of YbSn$$_{3}$$ single crystals based on Bragg-dip analysis using a delay-line superconducting sensor

Shishido, Hiroaki*; Vu, TheDang*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.

Journal of Applied Crystallography, 56(4), p.1108 - 1113, 2023/08

 Times Cited Count:0 Percentile:0.02(Chemistry, Multidisciplinary)

Journal Articles

Application of a first-order method to estimate the failure probability of component subjected to thermal transients for optimization of design parameters

Okajima, Satoshi; Mori, Takero; Kikuchi, Norihiro; Tanaka, Masaaki; Miyazaki, Masashi

Mechanical Engineering Journal (Internet), 10(4), p.23-00042_1 - 23-00042_12, 2023/08

In this paper, we propose the simplified procedure to estimate failure probability of components subjected to thermal transient for the design optimization. Failure probability can be commonly used as an indicator of component integrity for various failure mechanisms. In order to reduce number of analyses required for one estimation, we have adopted the First Order Second Moment (FOSM) method as the estimation method of failure probability on the process of the optimization, and an orthogonal table in experiment design method is utilized to define conditions of the analyses for the evaluation of the input parameters for the FOSM method. The superposition of ramp responses is also utilized to evaluate the time history of thermal transient stress instead of finite element analysis. Through the demonstration study to optimize thickness of cylindrical vessel subjected to thermal transient derived from shutdown, we confirmed that the procedure can evaluate the failure probability depending on the cylinder thickness with practical calculation cost.

Journal Articles

Application of quasi-Monte Carlo and importance sampling to Monte Carlo-based fault tree quantification for seismic probabilistic risk assessment of nuclear power plants

Kubo, Kotaro; Tanaka, Yoichi; Hakuta, Yuto*; Arake, Daisuke*; Uchiyama, Tomoaki*; Muramatsu, Ken

Mechanical Engineering Journal (Internet), 10(4), p.23-00051_1 - 23-00051_17, 2023/08

The significance of probabilistic risk assessments (PRAs) of nuclear power plants against external events was re-recognized after the Fukushima Daiichi Nuclear Power Plant accident. Regarding the seismic PRA, handling correlated failures of systems, components, and structures (SSCs) is very important because this type of failure negatively affects the redundancy of accident mitigation systems. The Japan Atomic Energy Research Institute initially developed a fault tree quantification methodology named the direct quantification of fault tree using Monte Carlo simulation (DQFM) to handle SSCs' correlated failures in detail and realistically. This methodology allows quantifying the top event occurrence probability by considering correlated uncertainties related to seismic responses and capacities with Monte Carlo sampling. The usefulness of DQFM has already been demonstrated. However, improving its computational efficiency would allow risk analysts to perform several analyses. Therefore, we applied quasi-Monte Carlo and importance sampling to the DQFM calculation of simplified seismic PRA and examined their effects. Specifically, the conditional core damage probability of a hypothetical pressurized water reactor was analyzed with some assumptions. Applying the quasi-Monte Carlo sampling accelerates the convergence of results at intermediate and high ground motion levels by an order of magnitude over Monte Carlo sampling. The application of importance sampling allows us to obtain a statistically significant result at a low ground motion level, which cannot be obtained through Monte Carlo and quasi-Monte Carlo sampling. These results indicate that these applications provide a notable acceleration of computation and raise the potential for the practical use of DQFM in risk-informed decision-making.

Journal Articles

First observation of $$^{28}$$O

Kondo, Yosuke*; Achouri, N. L.*; Al Falou, H.*; Atar, L.*; Aumann, T.*; Baba, Hidetada*; Boretzky, K.*; Caesar, C.*; Calvet, D.*; Chae, H.*; et al.

Nature, 620(7976), p.965 - 970, 2023/08

 Times Cited Count:6 Percentile:93.49(Multidisciplinary Sciences)

no abstracts in English

Journal Articles

Development of a statistical evaluation method for core hot spot temperature in sodium-cooled fast reactor under natural circulation conditions

Doda, Norihiro; Igawa, Kenichi*; Iwasaki, Takashi*; Murakami, Satoshi*; Tanaka, Masaaki

Nuclear Engineering and Design, 410, p.112377_1 - 112377_15, 2023/08

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

To enhance the safety of sodium-cooled fast reactors, the decay heat in the core must be removed by natural circulation even if the AC power supply to the forced circulation equipment is lost. Under natural circulation conditions, sodium flow is driven by buoyancy, and flow velocity and temperature distribution influence each other. Thus, it is difficult to evaluate the core hot spot temperature by deterministically considering the uncertainties affecting flow and heat. In this study, a statistical evaluation method is developed for the core hot spot temperature by using Monte Carlo sampling methods. The applicability of the core hotspot evaluation method was confirmed in three representative events during natural circulation decay heat removal operations in loop-type sodium-cooled fast reactors.

Journal Articles

Development of a design optimization framework for sodium-cooled fast reactors, 2; Development of optimization analysis control function

Doda, Norihiro; Nakamine, Yoshiaki*; Kuwagaki, Kazuki; Hamase, Erina; Kikuchi, Norihiro; Yoshimura, Kazuo; Matsushita, Kentaro; Tanaka, Masaaki

Keisan Kogaku Koenkai Rombunshu (CD-ROM), 28, 5 Pages, 2023/05

As a part of the development of the "Advanced Reactor Knowledge- and AI-aided Design Integration Approach through the whole plant lifecycle (ARKADIA)" to automatically optimize the life cycle of innovative nuclear reactors including fast reactors, ARKADIA-design is being developed to support the optimization of fast reactor in the conceptual design stage. ARKADIA-Design consists of three systems (Virtual plant Life System (VLS), Evaluation assistance and Application System (EAS), and Knowledge Management System (KMS)). A design optimization framework controls the connection between the three systems through the interfaces in each system. This paper reports on the development of an optimization analysis control function that performs design optimization analysis combining plant behavior analysis by VLS and optimization study by EAS.

Journal Articles

Improvement of reactivity model of core deformation in plant dynamics analysis code during unprotected loss of heat sink event in EBR-II

Yoshimura, Kazuo; Doda, Norihiro; Fujisaki, Tatsuya*; Igawa, Kenichi*; Tanaka, Masaaki; Yamano, Hidemasa

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 10 Pages, 2023/05

The benchmark analyses for the unprotected loss of heat sink (ULOHS) tests in the pool-type experimental SFR in the United States, EBR-II (BOP-301 and BOP-302R) have been conducted in order to validate the evaluation method of the reactivity feedback equipped in the plant dynamics analysis code named Super-COPD. In this study, 1D-CFD coupled analyses adding the core bowing reactivity model were conducted. Through the analysis, the applicability of the modified reactivity model was confirmed for the BOP-301 test. For the BOP-302R test, consideration of the core restraint system in the core and modeling the control rod driveline expansion reactivity was indicated.

Journal Articles

Development plan for coupling technology between high temperature gas-cooled reactor HTTR and hydrogen production facility, 1; Overview of the HTTR heat application test plan to establish high safety coupling technology

Nomoto, Yasunobu; Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; et al.

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

Journal Articles

Development plan for coupling technology between high temperature gas-cooled reactor HTTR and Hydrogen Production Facility, 2; Development plan for coupling equipment between HTTR and Hydrogen Production Facility

Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; Noguchi, Hiroki; et al.

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 6 Pages, 2023/05

Journal Articles

Development of structural design optimization process for an advanced sodium-cooled fast reactor

Kikuchi, Norihiro; Mori, Takero; Okajima, Satoshi; Tanaka, Masaaki; Miyazaki, Masashi

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 8 Pages, 2023/05

JAEA is developing an evaluation system aided by artificial intelligence (AI) named ARKADIA (Advanced Reactor Knowledge- and AI-aided Design Integration Approach through the whole plant lifecycle). A sub-system of it, named ARKADIA-Design, is being developed to support the design optimization study for an advanced nuclear plant including a sodium-cooled fast reactor (SFR). Authors are developing a design optimization process for the structure of the component in SFR. This paper describes the outline of a design optimization process, the brief introduction of evaluation methods for the process, and the result of the demonstration of the optimization process for a feasibility study. The development is being performed in a representative problem considering the thermal transient and seismic motion as a major issue in SFRs. Through the demonstration, it was confirmed that the optimization process under development may provide an optimal solution to the representative problem.

Journal Articles

Validation of feedback reactivity evaluation models for plant dynamics analysis code during unprotected loss of heat sink event in sodium-cooled fast reactors

Yoshimura, Kazuo; Doda, Norihiro; Igawa, Kenichi*; Tanaka, Masaaki; Yamano, Hidemasa

Journal of Nuclear Engineering and Radiation Science, 9(2), p.021601_1 - 021601_9, 2023/04

Feedback reactivity automatically caused by radial expansion of the core is known as one of the inherent safety features in a sodium-cooled fast reactor (SFR). In order to validate the evaluation models of the reactivity feedback equipped in the in-house plant dynamics analysis code named Super-COPD, the benchmark analyses for the unprotected loss of heat sink (ULOHS) tests of BOP-302R and BOP-301 in an experimental SFR, EBR-II were conducted and the applicability of the evaluation method for the reactivity feedback was indicated during the ULOHS even, by comparing the numerical results and the experimental data.

Journal Articles

Development of evaluation method of gas entrainment on the free surface in the reactor vessel in pool-type sodium-cooled fast reactors; Gas entrainment judgment based on three-dimensional evaluation of vortex center line and distribution of pressure decrease

Matsushita, Kentaro; Ezure, Toshiki; Imai, Yasutomo*; Fujisaki, Tatsuya*; Tanaka, Masaaki

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 8 Pages, 2022/08

Development of evaluation method for cover gas entrainment (GE) by vortices generated at free surface in upper plenum of sodium-cooled fast reactor (SFR) is required. GE evaluation tool, named StreamViewer, based on method using numerical results of three-dimensional computational fluid dynamics analysis for loop-type SFRs has been developed. In this study, modification of evaluation method of StreamViewer to rationalize conservativeness in evaluation results was examined by identifying vortex center lines and calculating three-dimensional distribution of pressure decrease along vortex center lines. The applicability of modified method was checked using water experimental result in rectangular open channel where unsteady vortices are generated. As the result, it was indicated that evaluation results on gas core depth which were excessive in current method were improved in modified method, and it is confirmed that modified method may discriminate onset of GE with appropriate criteria.

Journal Articles

Application of 1D-CFD coupling method to unprotected loss of heat sink event in EBR-II focusing on thermal stratification in cold pool

Yoshimura, Kazuo; Doda, Norihiro; Fujisaki, Tatsuya*; Igawa, Kenichi*; Tanaka, Masaaki; Yamano, Hidemasa

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 10 Pages, 2022/08

To confirm the applicability of the reactivity model, the authors have been conducting the benchmark exercises of the unprotected loss of heat sink event tests in a pool-type experimental fast reactor EBR-II. In the blind phase in the benchmark analyses using the plant dynamics analysis (1D) code in which the cold pool was modeled by means of the perfect mixing volume, it was found the increase of the core inlet temperature was evaluated lower than that of the measured data and the feedback reactivity was underestimated, because the thermal stratification in the cold pool was ignored. Then, the detailed model of the cold pool for the computational fluid dynamics (CFD) code was introduced and the 1D-CFD codes coupling method was applied to the benchmark analyses. It was confirmed that both the thermal stratification in the cold pool and the increase of the core inlet temperature were successfully reproduced.

Journal Articles

A Scoping study on the use of direct quantification of fault tree using Monte Carlo simulation in seismic probabilistic risk assessments

Kubo, Kotaro; Fujiwara, Keita*; Tanaka, Yoichi; Hakuta, Yuto*; Arake, Daisuke*; Uchiyama, Tomoaki*; Muramatsu, Ken*

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 8 Pages, 2022/08

After the Fukushima Daiichi Nuclear Power Plant accident, the importance of conducting probabilistic risk assessments (PRAs) of external events, especially seismic activities and tsunamis, was recognized. The Japan Atomic Energy Agency has been developing a computational methodology for seismic PRA, called the direct quantification of fault tree using Monte Carlo simulation (DQFM). When appropriate correlation matrices are available for seismic responses and capacities of components, the DQFM makes it possible to consider the effect of correlated failures of components connected through AND and/or OR gates in fault trees, which is practically difficult when methods using analytical solutions or multidimensional numerical integrations are used to obtain minimal cut set probabilities. The usefulness of DQFM has already been demonstrated. Nevertheless, a reduction of the computational time of DQFM would allow the large number of analyses required in PRAs conducted by regulators and/or operators. We; therefore, performed scoping calculations using three different approaches, namely quasi-Monte Carlo sampling, importance sampling, and parallel computing, to improve calculation efficiency. Quasi-Monte Carlo sampling, importance sampling, and parallel computing were applied when calculating the conditional core damage probability of a simplified PRA model of a pressurized water reactor, using the DQFM method. The results indicated that the quasi-Monte Carlo sampling works well at assumed medium and high ground motion levels, importance sampling is suitable for assumed low ground motion level, and that parallel computing enables practical uncertainty and importance analysis. The combined implementation of these improvements in a PRA code is expected to provide a significant acceleration of computation and offers the prospect of practical use of DQFM in risk-informed decision-making.

Journal Articles

Application of first-order method to estimate structural integrity in a probabilistic form of component subjected to thermal transient for optimization of design parameter

Okajima, Satoshi; Mori, Takero; Kikuchi, Norihiro; Tanaka, Masaaki; Miyazaki, Masashi

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 7 Pages, 2022/08

In this paper, we propose the simplified procedure to estimate failure probability of components subjected to thermal transient for the design optimization. Failure probability can be commonly used as an indicator of component integrity for various failure mechanisms. In order to reduce number of analyses required for one estimation, we have adopted the First Order Second Moment (FOSM) method as the estimation method of failure probability on the process of the optimization, and an orthogonal table in experiment design method is utilized to define conditions of the analyses for the evaluation of the input parameters for the FOSM method. Through the demonstration study to optimize thickness of cylindrical vessel subjected to thermal transient derived from shutdown, we confirmed that the procedure can evaluate the failure probability depending on the cylinder thickness with practical calculation cost.

596 (Records 1-20 displayed on this page)