Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Production rates of long-lived radionuclides $$^{10}$$Be and $$^{26}$$Al under direct muon-induced spallation in granite quartz and its implications for past high-energy cosmic ray fluxes

Sakurai, Hirohisa*; Kurebayashi, Yutaka*; Suzuki, Soichiro*; Horiuchi, Kazuho*; Takahashi, Yui*; Doshita, Norihiro*; Kikuchi, Satoshi*; Tokanai, Fuyuki*; Iwata, Naoyoshi*; Tajima, Yasushi*; et al.

Physical Review D, 109(10), p.102005_1 - 102005_18, 2024/05

Secular variations of galactic cosmic rays (GCRs) are inseparably associated with the galactic activities and should reflect the environments of the local galactic magnetic field, interstellar clouds, and nearby supernova remnants. The high-energy muons produced in the atmosphere by high-energy GCRs can penetrate deep underground and generate radioisotopes in the rock. As long lived radionuclides such as $$^{10}$$Be and $$^{26}$$Al have been accumulating in these rocks, concentrations of $$^{10}$$Be and $$^{26}$$Al can be used to estimate the long-term variations in high-energy muon yields, corresponding to those in the high-energy GCRs over a few million years. This study measured the production cross sections for muon induced $$^{10}$$Be and $$^{26}$$Al by irradiating positive muons with the momentum of 160 GeV/c on the synthetic silica plates and the granite core at the COMPASS experiment line in CERN SPS. In addition, it the contributions of the direct muon spallation reaction and the nuclear reactions by muon-induced particles on the production of long lived radionuclides in the rocks were clarified.

Oral presentation

Investigation on water history using deuterium fuel cell

Koizumi, Satoshi; Putra, A.; Zhao, Y.; Noda, Yohei; Yamaguchi, Daisuke; Ueda, Satoru*; Gunji, Hiroyuki*; Eguchi, Mika*; Tsutsumi, Yasuyuki*

no journal, , 

In order to investigate water history during fuel cell operation, we employed deuterated gas (D$$_{2}$$) as a fuel (deuterium fuel cell). With exchange of H$$_{2}$$ and D$$_{2}$$, we aim to perform a contrast variation as for polyelectrolyte film (Nafion). When D$$_{2}$$ gas is used as a fuel, D$$_{2}$$O is produced at the cathode and diffuses back to the film. Then the film, originally swollen by H$$_{2}$$O, exhibits change of coherent scattering contrast. By changing a fuel gas from H$$_{2}$$ to D$$_{2}$$, SANS quantitatively detected decrease of scattering intensity at scattering maximum originating from the ion-channel in the electrolyte. After quantitative analyses on scattering intensity, which is related to water ratio (H$$_{2}$$O/D$$_{2}$$O) in the ion channel, we could determine the water ration swelling a membrane.

2 (Records 1-2 displayed on this page)
  • 1