Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 23

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Non-destructive analysis of samples with a complex geometry by NRTA

Ma, F.; Kopecky, S.*; Alaerts, G.*; Harada, Hideo; Heyse, J.*; Kitatani, Fumito; Noguere, G.*; Paradela, C.*; $v{S}$alamon, L.*; Schillebeeckx, P.*; et al.

Journal of Analytical Atomic Spectrometry, 35(3), p.478 - 488, 2020/03

AA2019-0356.pdf:2.54MB

 Times Cited Count:4 Percentile:38.55(Chemistry, Analytical)

Journal Articles

Sample shape effect on nuclear material quantification with neutron resonance transmission analysis

Tsuchiya, Harufumi; Ma, F.; Kitatani, Fumito; Paradella, C.*; Heyse, J.*; Kopecky, S.*; Schillebeeckx, P.*

Proceedings of 41st ESARDA Annual Meeting (Internet), p.374 - 377, 2019/05

Journal Articles

Neutron resonance transmission analysis for measurement of nuclear materials in nuclear fuel

Tsuchiya, Harufumi; Kitatani, Fumito; Toh, Yosuke; Paradela, C.*; Heyse, J.*; Kopecky, S.*; Schillebeeckx, P.*

Proceedings of INMM 59th Annual Meeting (Internet), 6 Pages, 2018/07

Journal Articles

Development of active neutron NDA system for nuclear materials

Toh, Yosuke; Ozu, Akira; Tsuchiya, Harufumi; Furutaka, Kazuyoshi; Kitatani, Fumito; Komeda, Masao; Maeda, Makoto; Koizumi, Mitsuo; Heyse, J.*; Paradela, C.*; et al.

Proceedings of INMM 59th Annual Meeting (Internet), 9 Pages, 2018/07

Journal Articles

Neutron resonance analysis for nuclear safeguards and security applications

Paradela, C.*; Heyse, J.*; Kopecky, S.*; Schillebeeckx, P.*; Harada, Hideo; Kitatani, Fumito; Koizumi, Mitsuo; Tsuchiya, Harufumi

EPJ Web of Conferences, 146, p.09002_1 - 09002_4, 2017/09

 Times Cited Count:10 Percentile:98.13(Nuclear Science & Technology)

Journal Articles

Delayed $$gamma$$-ray spectroscopy combined with active neutron interrogation for nuclear security and safeguards

Koizumi, Mitsuo; Rossi, F.; Rodriguez, D.; Takamine, Jun; Seya, Michio; Bogucarska, T.*; Crochemore, J.-M.*; Varasano, G.*; Abbas, K.*; Pedersen, B.*; et al.

EPJ Web of Conferences, 146, p.09018_1 - 09018_4, 2017/09

 Times Cited Count:3 Percentile:85.84(Nuclear Science & Technology)

Journal Articles

Development of active neutron NDA techniques for nuclear nonproliferation and nuclear security

Toh, Yosuke; Ozu, Akira; Tsuchiya, Harufumi; Furutaka, Kazuyoshi; Kitatani, Fumito; Komeda, Masao; Maeda, Makoto; Kureta, Masatoshi; Koizumi, Mitsuo; Seya, Michio; et al.

EUR-28795-EN (Internet), p.684 - 693, 2017/00

Journal Articles

Delayed gamma-ray analysis for characterization of fissile nuclear materials

Koizumi, Mitsuo; Rossi, F.; Rodriguez, D.; Takamine, Jun; Seya, Michio; Bogucarska, T.*; Crochemore, J.-M.*; Varasano, G.*; Abbas, K.*; Pedersen, B.*; et al.

EUR-28795-EN (Internet), p.868 - 872, 2017/00

Journal Articles

LaBr$$_3$$ $$gamma$$-ray spectrometer for detecting $$^{10}$$B in debris of melted nuclear fuel

Koizumi, Mitsuo; Tsuchiya, Harufumi; Kitatani, Fumito; Harada, Hideo; Heyse, J.*; Kopecky, S.*; Mondelaers, W.*; Paradela, C.*; Schillebeeckx, P.*

Nuclear Instruments and Methods in Physics Research A, 837, p.153 - 160, 2016/11

 Times Cited Count:2 Percentile:19.46(Instruments & Instrumentation)

Journal Articles

Characteristics of neutron resonance densitometry, 2; Neutron resonance capture analysis

Tsuchiya, Harufumi; Harada, Hideo; Koizumi, Mitsuo; Kitatani, Fumito; Kureta, Masatoshi; Becker, B.*; Kopecky, S.*; Heyse, J.*; Paradela, C.*; Mondelaers, W.*; et al.

Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-36-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2015/12

Neutron Resonance Densitometry (NRD) was developed as a non-destructive assay to quantify U and Pu isotopes in particle-like debris. NRD is composed of neutron resonance transmission analysis (NRTA) and Neutron Resonance Capture Analysis (NRCA) or Prompt Gamma-ray Analysis (PGA). NRCA/PGA in NRD plays a role of identifying impurities in debris under the high-radiation field primarily caused by $$^{137}$$Cs. For this purpose, a novel LaBr$$_3$$ $$gamma$$-ray detector employing specific shields has been newly developed. With the developed $$gamma$$-ray detector, a demonstration NRCA experiment was performed at a neutron time of flight facility GELINA (Belgium). As a result, samples (Hf, Gd, Ni) placed in a black box that is completely sealed by third party were successfully identified by the experiment. This presentation explains the design concept of the $$gamma$$ ray detector including its detection principle and details of the demonstration NRCA experiment.

Journal Articles

Characteristics of neutron resonance densitometry, 1; Neutron resonance transmission analysis

Kitatani, Fumito; Harada, Hideo; Koizumi, Mitsuo; Tsuchiya, Harufumi; Kureta, Masatoshi; Becker, B.*; Kopecky, S.*; Heyse, J.*; Paradela, C.*; Mondelaers, W.*; et al.

Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-36-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2015/12

From 2012 to 2014, Neutron Resonance Densitometry (NRD) is being developed as a non-destructive assay to quantify U and Pu isotopes. NRD is composed of neutron resonance transmission analysis (NRTA) and Neutron Resonance Capture Analysis (NRCA)/Prompt Gamma-ray Analysis (PGA). NRTA in NRD plays a role of quantifying the amounts of the isotopes of a nuclear fuel material (U, Pu) in molten fuel debris. Therefore, the neutron absorption measurement using Time-of-Flight (TOF) method is carried out. A demonstration NRTA experiment was performed at a neutron time of flight facility GELINA (Belgium). Consequently, we succeeded in iquantifying the randomly selected sample from Au, W, Rh, Nb, Cu. Co, Mn, B contained in a black box. In this presentation, we describe the principle of measurement of the developed NRTA and explain details of the demonstration experiment.

Journal Articles

Active neutron NDA techniques for nuclear non-proliferation applications, 4; Development of delayed gamma-ray spectroscopy; Experimental research plan

Koizumi, Mitsuo; Heyse, J.*; Mondelaers, W.*; Paradela, C.*; Pedersen, B.*; Schillebeeckx, P.*; Seya, Michio; Rodriguez, D.; Takamine, Jun

Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-36-Kai Nenji Taikai Rombunshu (Internet), 6 Pages, 2015/12

The fission-product yield distributions are unique for each fissionable nuclide and interrogating neutron energy. Ratios of fissile materials (e.g. $$^{235}$$U, $$^{239}$$Pu, and $$^{241}$$Pu), therefore, could be deduced from differences in the observed neutron-induced Delayed Gamma-ray (DG) spectra characterized by the difference of these yields. This DG Spectroscopy (DGS) project includes research and development of a measurement system along with confirming and improving nuclear data. Experiments will be held at multiple facilities, including ITU/Ispra (Italy), IRMM/Geel (Belgium), and KURRI/Kumatori (Japan), using a wide range of neutron sources and nuclear material sample targets. The experimental efforts of this DGS project are described in this presentation.

Journal Articles

JAEA-JRC collaboration on the development of active neutron NDA techniques

Kureta, Masatoshi; Koizumi, Mitsuo; Ozu, Akira; Furutaka, Kazuyoshi; Tsuchiya, Takahiro*; Seya, Michio; Harada, Hideo; Abousahl, S.*; Heyse, J.*; Kopecky, S.*; et al.

Proceedings of 37th ESARDA Annual Meeting (Internet), p.111 - 120, 2015/08

The JAEA has just started the new program "Development of active neutron NDA techniques" collaborating with EC-JRC. The final purpose of this program is to establish the measurement techniques for the high radioactive special nuclear material such as MA-Pu fuel for transmutation of minor actinide and for nuclear security applications. In this program, JAEA will conduct the R&D on active neutron non-destructive measurement techniques, DDA, NRTA, PGA/NRCA and DGS.

Journal Articles

Techniques of neutron resonance capture analysis and prompt $$gamma$$-ray analysis for active neutron NDA

Koizumi, Mitsuo; Tsuchiya, Harufumi; Kitatani, Fumito; Kureta, Masatoshi; Seya, Michio; Harada, Hideo; Heyse, J.*; Kopecky, S.*; Mondelaers, W.*; Paradela, C.*; et al.

Proceedings of 37th ESARDA Annual Meeting (Internet), p.852 - 858, 2015/08

Journal Articles

Technique of neutron resonance transmission analysis for active neutron NDA

Tsuchiya, Harufumi; Koizumi, Mitsuo; Kitatani, Fumito; Kureta, Masatoshi; Harada, Hideo; Seya, Michio; Heyse, J.*; Kopecky, S.*; Mondelaers, W.*; Paradela, C.*; et al.

Proceedings of 37th ESARDA Annual Meeting (Internet), p.846 - 851, 2015/08

One of non-destructive techniques using neutron resonance reaction is neutron resonance transmission analysis (NRTA). We are presently developing a new active neutron non-destructive method including NRTA in order to detect and quantify special nuclear materials (SNMs) in nuclear fuels containing MA. We aim at applying the technique to not only particle-like debris but also other materials in high radiation field. For this aim, we make use of fruitful knowledge of neutron resonance densitometry (NRD) that was developed for particle-like debris in melted fuel. NRTA detects and quantifies SNMs by means of analyzing a neutron transmission spectrum via a resonance shape analysis. In this presentation, we explain the basic of NRTA and its role in the active neutron technique. Then, with knowledge obtained in the development of NRD, we discuss items to be investigated for NRTA in our active neutron technique.

Journal Articles

Preliminary delayed $$gamma$$-ray spectroscopy for non-destructive analysis of fissionable material

Rodriguez, D.; Heyse, J.*; Koizumi, Mitsuo; Mondelaers, W.*; Pedersen, B.*; Schillebeeckx, P.*; Seya, Michio; Takamine, Jun

Proceedings of INMM 56th Annual Meeting (Internet), 8 Pages, 2015/07

There is a growing interest regarding how to effectively safeguard NM, specifically how to efficiently determine the composition of mixed materials. Currently researchers of the JAEA and JRC are discussing the development of a NDA system using a pulsed DT neutron source. The system will utilize a combination of DDA, NRTA, PGA, and DGS techniques. Of specific interest is applying this system toward determining the Pu/U composition of purified MOX fuel and non-purified NM. The DGS technique has the potential to establish fissionable material ratios to relatively high precision. These fission products generate time-dependent $$gamma$$-ray energy spectra that extend well above 3 MeV, a benefit when applied to the NM of interest that have high passive emissions. This presentation will describe initial studies regarding the precision that the DGS portion of this system can obtain and how it will be used in conjunction with the other techniques to analyze the composition of the NM of interest.

Journal Articles

NRD demonstration experiments at GELINA

Paradela, C.*; Alaerts, G.*; Becker, B.*; Harada, Hideo; Heyse, J.*; Kitatani, Fumito; Koizumi, Mitsuo; Kopecky, S.*; Mondelaers, W.*; Moens, A.*; et al.

EUR-27507-EN, 16 Pages, 2015/04

Journal Articles

Determination of resonance parameters and their covariances from neutron induced reaction cross section data

Schillebeeckx, P.*; Becker, B.*; Danon, Y.*; Guber, K.*; Harada, Hideo; Heyse, J.*; Junghans, A. R.*; Kopecky, S.*; Massimi, C.*; Moxon, M. C.*; et al.

Nuclear Data Sheets, 113(12), p.3054 - 3100, 2012/12

 Times Cited Count:104 Percentile:97.18(Physics, Nuclear)

Oral presentation

How to measure prompt $$gamma$$-rays under strong background

Koizumi, Mitsuo; Tsuchiya, Harufumi; Kitatani, Fumito; Harada, Hideo; Takamine, Jun; Kureta, Masatoshi; Iimura, Hideki; Kimura, Atsushi; Seya, Michio; Paradela, C.*; et al.

no journal, , 

no abstracts in English

Oral presentation

Challenge towards quantification of SNM from Fukushima Daiichi by NRD

Harada, Hideo; Koizumi, Mitsuo; Tsuchiya, Harufumi; Kitatani, Fumito; Seya, Michio; Becker, B.*; Heyse, J.*; Kopecky, S.*; Paradela, C.*; Schillebeeckx, P.*

no journal, , 

A new concept named as neutron resonance densitometry (NRD) has been proposed by JAEA to quantify the amounts of special nuclear materials included in samples with unknown elemental and isotopic composition, such as melted fuel debris generated in severe accidents of nuclear reactors such as Fukushima Daiichi. JAEA and JRC-IRMM has started the international collaboration on the feasibility study aiming at development of a quantifying technique of nuclear materials by a non-destructive method NRD. The highlights of the significant results such as detector development, validation measurements using a U sample and a heterogeneous sample, the advanced analysis method are presented together with the concept of the NRD.

23 (Records 1-20 displayed on this page)