Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Grain size independence of cryogenic strain recovery behavior in high-Zr $$beta$$-Ti alloy

Zhang, B.*; Xin, S.*; Huang, M.*; Mao, W.; Jia, W.*; Li, Q.*; Li, S.*; Zhang, S.*; Mao, C.*

Materials Science & Engineering A, 890, p.145898_1 - 145898_7, 2024/01

 Times Cited Count:0 Percentile:0(Nanoscience & Nanotechnology)

A significant increase in the recovery strain of a high-Zr $$beta$$-Ti alloy from 2.25 % to 5.5 % when decreasing the deformation temperature from 300 K to 77 K is reported in this study. It is found that the super-elasticity of this alloy is independent of the $$beta$$-grain size at 77 K. The results reveal that a coarse-grained specimen exhibited approximately the same super-elasticity as its ultra-fine grain counterpart at 77 K. The relative easiness of deformation-induced martensitic transformation and dislocation slip was substantially changed at 77 K, with a strong suppression of dislocation slip, which overshadowed the effect of grain refinement on the super-elasticity.

Journal Articles

Suppressed lattice disorder for large emission enhancement and structural robustness in hybrid lead iodide perovskite discovered by high-pressure isotope effect

Kong, L.*; Gong, J.*; Hu, Q.*; Capitani, F.*; Celeste, A.*; Hattori, Takanori; Sano, Asami; Li, N.*; Yang, W.*; Liu, G.*; et al.

Advanced Functional Materials, 31(9), p.2009131_1 - 2009131_12, 2021/02

 Times Cited Count:23 Percentile:81.42(Chemistry, Multidisciplinary)

The soft nature of organic-inorganic halide perovskites renders their lattice particularly tunable to external stimuli such as pressure, undoubtedly offering an effective way to modify their structure for extraordinary optoelectronic properties. However, these soft materials meanwhile feature a general characteristic that even a very mild pressure will lead to detrimental lattice distortion and weaken the critical light-matter interaction, thereby triggering the performance degradation. Here, using the methylammonium lead iodide as a representative exploratory platform, we observed the pressure-driven lattice disorder can be significantly suppressed via hydrogen isotope effect, which is crucial for better optical and mechanical properties previously unattainable.

Journal Articles

Excited $$Omega_b$$ baryons and fine structure of strong interaction

Chen, H.-X.*; Cui, E.-L.*; Hosaka, Atsushi; Mao, Q.*; Yang, H.-M.*

European Physical Journal C, 80(3), p.256_1 - 256_6, 2020/03

 Times Cited Count:11 Percentile:60.41(Physics, Particles & Fields)

Journal Articles

Decay properties of $$P$$-wave bottom baryons within light-cone sum rules

Yang, H.-M.*; Chen, H.-X.*; Cui, E.-L.*; Hosaka, Atsushi; Mao, Q.*

European Physical Journal C, 80(2), p.80_1 - 80_17, 2020/02

 Times Cited Count:20 Percentile:78.88(Physics, Particles & Fields)

Oral presentation

The Influence of gap geometry on impurity deposition and fuel accumulation in the castellated tungsten plasma-facing components exposed in EAST

Ding, F.*; Ashikawa, Naoko*; Fukumoto, Masakatsu; Katayama, Kazunari*; Mao, H.*; Ding, R.*; Xu, Q.*; Wu, J.*; Xie, C. Y.*; Luo, G.-N.*

no journal, , 

5 (Records 1-5 displayed on this page)
  • 1