Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamamoto, Hajime*; Ikeda, Osamu*; Honda, Takashi*; Kimura, Kenta*; Aoyama, Takuya*; Ogushi, Kenya*; Suzuki, Akio*; Ishii, Kenji*; Matsumura, Daiju; Tsuji, Takuya; et al.
Physical Review Materials (Internet), 8(9), p.094402_1 - 094402_6, 2024/09
Times Cited Count:2 Percentile:51.02(Materials Science, Multidisciplinary)Hirata, Sakiko*; Kusaka, Ryoji; Meiji, Shogo*; Tamekuni, Seita*; Okudera, Kosuke*; Hamada, Shoken*; Sakamoto, Chihiro*; Honda, Takumi*; Matsushita, Kosuke*; Muramatsu, Satoru*; et al.
Inorganic Chemistry, 62(1), p.474 - 486, 2023/01
Times Cited Count:3 Percentile:27.89(Chemistry, Inorganic & Nuclear)Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Takagi, Yasuhiko*; Nakamura, Tomoki*; Hiroi, Takahiro*; Matsuoka, Moe*; et al.
Nature Astronomy (Internet), 5(3), p.246 - 250, 2021/03
Times Cited Count:60 Percentile:96.18(Astronomy & Astrophysics)Here we report observations of Ryugu's subsurface material by the Near-Infrared Spectrometer (NIRS3) on the Hayabusa2 spacecraft. Reflectance spectra of excavated material exhibit a hydroxyl (OH) absorption feature that is slightly stronger and peak-shifted compared with that observed for the surface, indicating that space weathering and/or radiative heating have caused subtle spectral changes in the uppermost surface. However, the strength and shape of the OH feature still suggests that the subsurface material experienced heating above 300 C, similar to the surface. In contrast, thermophysical modeling indicates that radiative heating does not increase the temperature above 200
C at the estimated excavation depth of 1 m, even if the semimajor axis is reduced to 0.344 au. This supports the hypothesis that primary thermal alteration occurred due to radiogenic and/or impact heating on Ryugu's parent body.
Hwang, J.-G.*; Kim, E.-S.*; Miyajima, Tsukasa*; Honda, Yosuke*; Harada, Kentaro*; Shimada, Miho*; Takai, Ryota*; Kume, Tatsuya*; Nagahashi, Shinya*; Obina, Takashi*; et al.
Nuclear Instruments and Methods in Physics Research A, 753, p.97 - 104, 2014/07
Times Cited Count:7 Percentile:45.19(Instruments & Instrumentation)Sakanaka, Shogo*; Akemoto, Mitsuo*; Aoto, Tomohiro*; Arakawa, Dai*; Asaoka, Seiji*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; et al.
Proceedings of 1st International Particle Accelerator Conference (IPAC '10) (Internet), p.2338 - 2340, 2010/05
Future synchrotron light source using a 5-GeV energy recovery linac (ERL) is under proposal by our Japanese collaboration team, and we are conducting R&D efforts for that. We are developing high-brightness DC photocathode guns, two types of cryomodules for both injector and main superconducting (SC) linacs, and 1.3 GHz high CW-power RF sources. We are also constructing the Compact ERL (cERL) for demonstrating the recirculation of low-emittance, high-current beams using above-mentioned critical technologies.
Yamamoto, Masahiro*; Honda, Yosuke*; Miyajima, Tsukasa*; Uchiyama, Takashi*; Kobayashi, Masanori*; Muto, Toshiya*; Matsuba, Shunya*; Sakanaka, Shogo*; Sato, Kotaro*; Saito, Yoshio*; et al.
Proceedings of 6th Annual Meeting of Particle Accelerator Society of Japan (CD-ROM), p.860 - 862, 2009/08
A newly 500 kV electron gun (2nd - 500 kV gun) for an ERL light source is designed at KEK. A new concept and state of-the-art technologies of vacuum system, ceramic insulators, high voltage power supply, photocathode and preparation system will be employed. The details are described in this report.
Sakanaka, Shogo*; Ago, Tomonori*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; Harada, Kentaro*; Hiramatsu, Shigenori*; Honda, Toru*; et al.
Proceedings of 11th European Particle Accelerator Conference (EPAC '08) (CD-ROM), p.205 - 207, 2008/06
Future synchrotron light sources based on the energy-recovery linacs (ERLs) are expected to be capable of producing super-brilliant and/or ultra-short pulses of synchrotron radiation. Our Japanese collaboration team is making efforts for realizing an ERL-based hard X-ray source. We report recent progress in our R&D efforts.
Meiji, Shogo*; Hirata, Sakiko*; Kusaka, Ryoji; Honda, Takumi*; Tamekuni, Seita*; Muramatsu, Satoru*; Saito, Kenichi*; Hirao, Takehiro*; Haino, Takeharu*; Watanabe, Masayuki; et al.
no journal, ,
Kwon, Saerom*; Konno, Chikara; Honda, Shogo*; Kenjo, Shunsuke*; Ochiai, Kentaro*; Sato, Satoshi*
no journal, ,
Nuclear data determine accuracy of nuclear analyses for a fusion neutron A-FNS. We analyzed JAEA/FNS beryllium experiment with the latest nuclear data libraries and clarified effects of different secondary neutron spectra of Be-9 among the nuclear data libraries and those of reaction rates sensitive to low energy neutrons due to Be-9 thermal neutron scattering law data with different crystallite domain sizes. This study will lead to accurate nuclear analyses, which contributes to engineering designs for A-FNS.
Kwon, Saerom*; Konno, Chikara; Honda, Shogo*; Sato, Satoshi*; Masuda, Kai*
no journal, ,
We examined the accuracy of the iron data in the latest nuclear data libraries (FENDL-3.2b, JENDL-5, ENDF/B-VIII.0 and JEFF-3.3) used in the fusion neutron source design by using QST/TIARA iron experiment with quasi mono-energy neutrons of 40 and 65 MeV and JAEA/FNS iron experiment with DT neutrons. Then we have found the following issues on FENDL-3.2b iron data and specified that the non-elastic, inelastic scattering, (n,2n) reaction and (n,np) reaction data of Fe and inelastic scattering data of
Fe caused the issues.1) The calculation results with FENDL-3.2b underestimate the measured neutron fluxes of the continuous energy range (10-60 MeV) by a factor of 0.6 in the TIARA experiment with 65 MeV neutrons. 2) The calculation results with FENDL-3.2b tend to underestimate the measured neutron flux above 10 MeV by a factor of 0.8 at depth of 70 cm and overestimate the measured ones below 10 keV by a factor of 1.3 up to depth of 40 cm in the FNS experiment.