Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Generality assessment of a model considering heterogeneous cancer cells for predicting tumor control probability for stereotactic body radiotherapy against non-small cell lung cancer

Saga, Ryo*; Matsuya, Yusuke; Obara, Hideki*; Komai, Fumio*; Yoshino, Hironori*; Aoki, Masahiko*; Hosokawa, Yoichiro*

Advances in Radiation Oncology (Internet), 9 Pages, 2024/00

The curative effects after radiotherapy are evaluated by the index of tumor control probability (TCP), and the treatment regimen has been determined empirically based on clinical experiences. In recent years, in order to determine TCP for any treatment regimens based on cell experiments, it is necessary to consider the existence of radioresistant cancer stem cells, which are included in tumors at from a few to several tens of percent. Our previous study has proposed an integrated microdosimetric-kinetic (IMK) model that explicitly considers cancer stem cells, and successfully reproduced cancer cell death obtained from cell experiments and clinical TCP. However, the verification so far has been limited to comparison with the clinical data of Hirosaki University Hospital, and comparative verification with clinical data of other facilities has not been performed. In this study, we focused on the stereotactic radiotherapy against non-small cell lung cancer that prescribes a large dose at once, and compared the public data collected by meta-analysis with the IMK model. As a result, it was found that the IMK model considering cancer stem cells well reproduced the clinical TCP regardless of the observed facility type. This work would contribute to the development of technology for predicting curative effects of radiotherapy with high precision.

Journal Articles

Translational study for stereotactic body radiotherapy against non-small cell lung cancer, including oligometastases, considering cancer stem-like cells enable predicting clinical outcome from ${it in vitro}$ data

Saga, Ryo*; Matsuya, Yusuke; Sato, Hikari*; Hasegawa, Kazuki*; Obara, Hideki*; Komai, Fumio*; Yoshino, Hironori*; Aoki, Masahiko*; Hosokawa, Yoichiro*

Radiotherapy and Oncology, p.109444_1 - 109444_9, 2023/00

 Times Cited Count:2 Percentile:77.68(Oncology)

When treating non-small cell lung cancer (NSCLC), stereotactic body radiotherapy (SBRT) with high-dose irradiation is often utilized. The fractionation schemes and curative effects can be evaluated by mathematical models for predicting cell survival curve. Such model parameters can be determined from in vitro experiment, but they are empirically determined based on experiences in clinics. As such, there is a large gap between in vitro and clinical study. As such background, translational study between in vitro cell survival and clinical curative effects is necessary. In this study, explicitly considering existence of cancer stem-like cells (CSCs), we developed an all-in-one model for predicting both in vitro cell survival and clinical curative effects (integrated microdosimetric-kinetic (IMK) model) and performed retrospective evaluation of clinical outcomes following SBRT for NSCLC in Hirosaki University Hospital. As a result, the IMK model successfully reproduced both in vitro cell survival and the tumor control probability with various fractionation schemes (i.e., 6-10 Gy per fraction). The developed model would contribute on precisely understanding the impact of CSCs on curative effects after SBRT for NSCLC with high precision.

2 (Records 1-2 displayed on this page)
  • 1