Refine your search:     
Report No.
 - 
Search Results: Records 1-17 displayed on this page of 17
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of a new continuous dissolution apparatus with a hydrophobic membrane for superheavy element chemistry

Oe, Kazuhiro*; Attallah, M. F.*; Asai, Masato; Goto, Naoya*; Gupta, N. S.*; Haba, Hiromitsu*; Huang, M.*; Kanaya, Jumpei*; Kaneya, Yusuke*; Kasamatsu, Yoshitaka*; et al.

Journal of Radioanalytical and Nuclear Chemistry, 303(2), p.1317 - 1320, 2015/02

 Times Cited Count:10 Percentile:64(Chemistry, Analytical)

A new technique for continuous dissolution of nuclear reaction products transported by a gas-jet system was developed for superheavy element (SHE) chemistry. In this technique, a hydrophobic membrane is utilized to separate an aqueous phase from the gas phase. With this technique, the dissolution efficiencies of short-lived radionuclides of $$^{91m,93m}$$Mo and $$^{176}$$W were measured. Yields of more than 80% were observed for short-lived radionuclides at aqueous-phase flow rates of 0.1-0.4 mL/s. The gas flow-rate had no influence on the dissolution efficiency within the studied flow range of 1.0-2.0 L/min. These results show that this technique is applicable for on-line chemical studies of SHEs in the liquid phase.

Journal Articles

Relaxation behaviour of laser peening residual stress due to mechanical loading on aluminum alloy

Miyashita, Daisuke*; Takeda, Kazuya*; Oya, Shinichi*; Sano, Yuji*; Saito, Toshiyuki*; Akita, Koichi

Zairyo, 60(7), p.617 - 623, 2011/07

The surface residual stress relaxation under tensile loading occurred when the plastic-deformation started at the inside of material where the balancing tensile residual stress existed. Under the compressive loading, the surface residual stress relaxation started due to the plastic deformation beneath the surface where the maximum compressive residual stress existed. The plastic deformation at the inside of material caused the redistribution of the residual stress and resulted in the relaxation of the surface residual stress. For both tensile and compressive loading, the surface compressive residual stress relaxation occurred before the total stress (= (residual stress) + (applied stress)) at the surface reached to the yield condition. The conclusions of this study are thought to be able to apply to the behavior of the residual stress under the mechanical loading on metallic materials treated by any mechanical surface treatment.

Journal Articles

Relaxation process of residual stress induced by laser peening

Akita, Koichi; Miyashita, Daisuke*; Takeda, Kazuya*; Oya, Shinichi*; Shobu, Takahisa; Sano, Kenji*; Saito, Toshiyuki*

Nihon Zairyo Gakkai Dai-44-Kai X Sen Zairyo Kyodo Ni Kansuru Shimpojiumu Koen Rombunshu, p.46 - 50, 2010/07

Relaxation process of surface compressive residual stress during tensile or compressive loading on a laser peened aluminum alloy was investigated. The residual stress was measured by X-ray, synchrotron and neutron diffractions and analyzed by a finite element method. The relaxation process clarified in this study was described as follows. When the tensile loading was increased, plastic deformation was occurred at the tensile residual stress region that existed inside of the material to be balanced with the surface compressive residual stress. On the other hand, when the compressive loading was applied, the plastic deformation was started at the maximum compressive residual stress region located just beneath the surface. Because the plastic deformation of the inside of the material induced the redistribution of the residual stress in the sample, the surface compressive residual stress was relaxed prior to the surface yielding.

Oral presentation

Residual stress measurements using synchrotron X-ray on nickel-based superalloy at cryogenic temperatures

Akita, Koichi*; Ono, Yoshinori*; Shobu, Takahisa; Miyashita, Daisuke*; Yuri, Tetsumi*; Ogata, Toshio*; Oya, Shinichi*

no journal, , 

Oral presentation

Measurements of residual stress distribution on peened nickel-based superalloy at cryogenic temperatures

Miyashita, Daisuke*; Akita, Koichi*; Oya, Shinichi*; Ono, Yoshinori*; Ogata, Toshio*; Yuri, Tetsumi*; Shobu, Takahisa

no journal, , 

no abstracts in English

Oral presentation

Lifetime measurements of long-lived isomers in $$^{162,165}$$Gd using a total absorption detector

Asai, Masato; Hayashi, Hiroaki*; Osa, Akihiko; Sato, Tetsuya; Otokawa, Yoshinori; Nagae, Daisuke; Tsukada, Kazuaki; Miyashita, Yuji*; Ouchi, Hiroyuki*; Izumi, Sayaka*; et al.

no journal, , 

We have developed a new method to measure lifetime of long-lived isomers populated through the $$beta$$ decay, using a total absorption detector. Using this method, we have determined lifetime of the K isomers in $$^{162}$$Gd and $$^{165}$$Gd for the first time. The short-lived neutron-rich nuclei $$^{162}$$Eu and $$^{165}$$Eu were produced and mass-separated by the on-line isotope separator (ISOL) at JAEA tandem accelerator facility. Beta- and $$gamma$$ rays emitted by the $$beta$$ decay of $$^{162,165}$$Eu were total-absorbed by the detector, and all the events were recorded with time stamps. This method enabled us to determine lifetime of the isomers with more than 100-$$mu$$s lifetime.

Oral presentation

Electrolytic reduction studies of Mo and W towards the reduction of seaborgium

Toyoshima, Atsushi; Asai, Masato; Attallah, M. F.*; Goto, Naoya*; Gupta, N. S.*; Haba, Hiromitsu*; Huang, M.*; Kanaya, Jumpei*; Kaneya, Yusuke; Kasamatsu, Yoshitaka*; et al.

no journal, , 

Towards electrolytic reduction of Sg, batch-wise electrolytic reduction of carrier-free $$^{93m}$$Mo and $$^{176,181}$$W radiotracers was studied using a flow electrolytic column (FEC). The electrolyzed samples from a FEC were chemically analyzed by solvent extraction with TOA and HDEHP to separate and identify reduced species from the stable Mo(VI) and W(VI) ones based on their different extraction behavior. $$^{93m}$$Mo and $$^{176, 181}$$W were applied as radiotracers. We also performed cyclic voltammetry and UV/Vis absorption spectrometry of macro amounts of Mo and W in acidic solutions to obtain information on redox reactions of these elements under given conditions. In the conference, the present status of the preparatory reduction experiments with Mo and W will be presented.

Oral presentation

Electrolytic reduction of Mo and W as lighter homologues of seaborgium

Toyoshima, Atsushi; Miyashita, Sunao*; Oe, Kazuhiro*; Kitayama, Yuta*; Lerum, H. V.*; Goto, Naoya*; Kaneya, Yusuke; Komori, Yukiko*; Mitsukai, Akina*; Vascon, A.; et al.

no journal, , 

no abstracts in English

Oral presentation

Developments towards aqueous phase chemistry of transactinide elements

Toyoshima, Atsushi; Oe, Kazuhiro*; Asai, Masato; Attallah, M. F.*; Goto, Naoya*; Gupta, N. S.*; Haba, Hiromitsu*; Kaneko, Masashi*; Kaneya, Yusuke; Kasamatsu, Yoshitaka*; et al.

no journal, , 

Due to short half-lives less than 10 s and extremely low production rates, transactinide elements heavier than seaborgium (Sg) are produced on an atom per hour scale. Therefore, a continuous rapid chemistry assembly is required to study aqueous-phase chemistry of these heaviest elements. In the present study, we started developments of a continuous chemistry assembly. Our first attempt was made in on-line experiments with Mo and W, lighter homologs of Sg, to optimize a chemistry assembly consisting of a newly developed membrane degasser as an interface between gas-jet and aqueous phase, a flow electrolytic column apparatus utilized to control oxidation states of Mo and W ions, and the continuous liquid-liquid extraction apparatus of SISAK for separation. In the conference, present status of the developments will be presented.

Oral presentation

First ionization potentials of heavy actinides

Sato, Tetsuya; Asai, Masato; Kaneya, Yusuke*; Tsukada, Kazuaki; Toyoshima, Atsushi; Mitsukai, Akina*; Takeda, Shinsaku*; Vascon, A.*; Sakama, Minoru*; Sato, Daisuke*; et al.

no journal, , 

The first ionization potential (IP$$_1$$) yields information on valence electronic structure of an atom. IP$$_1$$ values of heavy actinides beyond einsteinium (Es, Z = 99), however, have not been determined experimentally so far due to the difficulty in obtaining these elements on scales of more than one atom at a time. Recently, we successfully measured IP$$_1$$ of lawrencium (Lr, Z = 103) using a surface ionization method. The result suggests that Lr has a loosely-bound electron in the outermost orbital. In contrast to Lr, nobelium (No, Z = 102) is expected to have the highest IP$$_1$$ among the actinide elements owing to its full-filled 5f and the 7s orbitals. In the present study, we have successfully determined IP$$_1$$ values of No as well as fermium (Fm, Z = 100) and mendelevium (Md, Z = 101) using the surface ionization method. The obtained results indicate that the IP$$_1$$ value of heavy actinoids would increase monotonically with filling electrons up in the 5f orbital like heavy lanthanoids.

Oral presentation

Adsorption behavior of lawrencium (Lr) on a tantalum surface

Sato, Tetsuya; Kaneya, Yusuke*; Asai, Masato; Tsukada, Kazuaki; Toyoshima, Atsushi; Mitsukai, Akina*; Osa, Akihiko; Makii, Hiroyuki; Nishio, Katsuhisa; Hirose, Kentaro; et al.

no journal, , 

The ground state electronic configuration of lawrencium (Lr, Z =103) is predicted to be [Rn]$$5f^{14}7s^27p_{1/2}$$, which is different from that of the lanthanide homolog Lu [Xe]$$4f^{14}6s^25d$$ due to strong relativistic effects. According to semi-empirical considerations, volatility of Lr is expected to be higher than that of Lu. We have investigated adsorption behavior of $$^{256}$$Lr, which was produced in the reaction of $$^{249}$$Cf($$^{11}$$B, 4n), on a tantalum (Ta) metal surface using a surface ion-source installed into the isotope separator on-line (ISOL) at the JAEA tandem accelerator facility. The observed adsorption behavior of $$^{256}$$Lr was similar to those of Tb and Lu which have relatively higher adsorption enthalpy on Ta surface. It implies that Lr would have low volatility like such as Lu and Tb.

Oral presentation

Adsorption behavior of lawrencium (Lr, Z = 103) on a tantalum surface

Sato, Tetsuya; Kaneya, Yusuke*; Asai, Masato; Tsukada, Kazuaki; Toyoshima, Atsushi; Mitsukai, Akina*; Osa, Akihiko; Makii, Hiroyuki; Hirose, Kentaro; Nagame, Yuichiro; et al.

no journal, , 

Our experimental results on the first ionization potential measurement of lawrencium (Lr, element 103) have strongly suggested that the Lr atom has a [Rn]$$7s^25f^{14}7p_{1/2}$$ configuration as a result of the influence of strong relativistic effects. The configuration is different from that expected from the lanthanide homologue, lutetium (Lu). According to a semi-empirical consideration, it is expected that the change of the electronic configuration leads higher volatility of Lr than that of Lu. In this work, adsorption behaviors of Lr and various short-lived rare earth isotopes on a tantalum surface were investigated via observation of their surface ionization efficiencies. It was found that Lr would behave like low volatile rare earth elements such as Lu contrary to the semi-empirical expectation.

Oral presentation

Adsorption of lawrencium (Lr) on a metallic tantalum (Ta) surface

Kaneya, Yusuke*; Tomitsuka, Tomohiro; Sato, Tetsuya; Asai, Masato; Tsukada, Kazuaki; Toyoshima, Atsushi; Mitsukai, Akina; Makii, Hiroyuki; Hirose, Kentaro; Osa, Akihiko; et al.

no journal, , 

Oral presentation

First ionization energies of heavy actinides

Nagame, Yuichiro; Sato, Tetsuya; Asai, Masato; Kaneya, Yusuke*; Makii, Hiroyuki; Mitsukai, Akina; Osa, Akihiko; Sch$"a$del, M.*; Toyoshima, Atsushi; Tsukada, Kazuaki; et al.

no journal, , 

Oral presentation

Adsorption of lawrencium on a metallic tantalum surface at high temperature

Kaneya, Yusuke*; Asai, Masato; Sato, Tetsuya; Tomitsuka, Tomohiro; Tsukada, Kazuaki; Toyoshima, Atsushi; Mitsukai, Akina; Makii, Hiroyuki; Hirose, Kentaro; Osa, Akihiko; et al.

no journal, , 

To study the influence of the valence 7p$$_{1/2}$$ electronic orbital on chemical properties of lawrencium, a measurement of the adsorption enthalpy of lawrencium was carried out. A new method using a surface ionization technique coupled to an on-line isotope separator was developed, which enabled one to measure temperature dependence of lawrencium surface adsorption on a metallic tantalum surface at high temperature up to 2800 K. The temperature dependences of adsorption of lawrencium as well as various lanthanide elements were investigated with this method, and the adsorption enthalpy of lawrencium was successfully extracted.

Oral presentation

Adsorption behavior of lawrencium on a tantalum surface

Sato, Tetsuya; Kaneya, Yusuke*; Asai, Masato; Tsukada, Kazuaki; Toyoshima, Atsushi; Mitsukai, Akina*; Osa, Akihiko; Makii, Hiroyuki; Hirose, Kentaro; Nagame, Yuichiro; et al.

no journal, , 

Our experimental results on the first ionization potential measurement of lawrencium (Lr, element 103) have strongly suggested that the Lr atom has a [Rn]$$7s^25f^{14}7p_{1/2}$$ configuration as a result of the influence of strong relativistic effects. The configuration is different from that expected from the lanthanide homologue, lutetium (Lu). According to a semi-empirical consideration, it is expected that the change of the electronic configuration leads higher volatility of Lr than that of Lu. In this work, adsorption behaviors of Lr and various short-lived rare earth isotopes on a tantalum surface were investigated via observation of their surface ionization efficiencies. It was found that Lr would behave like low volatile rare earth elements such as Lu contrary to the semi-empirical expectation.

Oral presentation

Measurements of the first ionization potentials of heavy actinides

Sato, Tetsuya; Asai, Masato; Kaneya, Yusuke*; Tsukada, Kazuaki; Toyoshima, Atsushi; Mitsukai, Akina*; Takeda, Shinsaku*; Vascon, A.*; Sakama, Minoru*; Sato, Daisuke*; et al.

no journal, , 

The first ionization potential (IP$$_1$$) yields information on valence electronic structure of an atom. IP$$_1$$ values of heavy actinides beyond einsteinium (Es, Z = 99), however, have not been determined experimentally so far due to the difficulty in obtaining these elements on scales of more than one atom at a time. Recently, we successfully measured IP$$_1$$ of lawrencium (Lr, Z = 103) using a surface ionization method. The result suggests that Lr has a loosely-bound electron in the outermost orbital. In contrast to Lr, nobelium (No, Z = 102) is expected to have the highest IP$$_1$$ among the actinide elements owing to its full-filled 5f and the 7s orbitals. In the present study, we have successfully determined IP$$_1$$ values of No as well as fermium (Fm, Z = 100) and mendelevium (Md, Z = 101) using the surface ionization method. The obtained results indicate that the IP$$_1$$ value of heavy actinoids would increase monotonically with filling electrons up in the 5f orbital like heavy lanthanoids.

17 (Records 1-17 displayed on this page)
  • 1