Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Aoki, Takeshi; Shimizu, Atsushi; Ishii, Katsunori; Morita, Keisuke; Mizuta, Naoki; Kurahayashi, Kaoru; Yasuda, Takanori; Noguchi, Hiroki; Nomoto, Yasunobu; Iigaki, Kazuhiko; et al.
Annals of Nuclear Energy, 220, p.111503_1 - 111503_7, 2025/09
Times Cited Count:0Aiming to establish coupling technologies between a high temperature gas cooled reactor and a hydrogen production plant, JAEA has initiated the HTTR Heat Application Test Project and is conducting the safety design and the safety analysis for the licensing of the HTTR Heat Application Test Facility. The present study proposed a relative evaluation methodology for the demarcation of applicable laws and design standards for the nuclear hydrogen production system and applied it to the HTTR Heat Application Test Facility. The evaluation results showed that a candidate applying the High Pressure Gas Safety Act to the Heat Application Test Facility (hydrogen production plant) and design standards established under the High Pressure Gas Safety Act to the steam reformer did not show the lowest category in any of the metrics, and was proposed as the most superior demarcation option for the HTTR Heat Application Test Facility.
Machida, Akihiko*; Saito, Hiroyuki*; Aoki, Katsutoshi*; Komatsu, Kazuki*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Machida, Shinichi*; Sato, Toyoto*; Orimo, Shinichi*
Physical Review B, 111(22), p.224413_1 - 224413_6, 2025/06
The crystal and magnetic structures of antiferromagnetic Mn deuterides formed by hydrogenating Mn metal at high temperature and high pressure, fcc -MnDx and hcp
-MnDx, were investigated by in-situ neutron powder diffraction. Deuterium atoms partially occupied the octahedral interstitial positions of the fcc and hcp metal lattices. The site occupancies increased rapidly with decreasing temperature from
700 to
450 K and remained down to 300 K. N
el temperature of 543(10) K was determined for
-MnD
. For
-MnD
, saturation magnetic moment and N
el temperature were determined to be 0.82(1)
and 347(3) K, respectively. The N
el temperatures determined for
-MnD
and
-MnD
are consistent with those predicted by the respective Slater-Pauling curves proposed in previous studies. The updated N
el temperatures provide insights into the development of more accurate Slater-Pauling curves based on electronic band structure calculations.
Sato, Hiroyuki; Yan, X.
Progress in Nuclear Science and Technology (Internet), 7, p.293 - 298, 2025/05
Nishio, Katsuhisa; Hirose, Kentaro; Makii, Hiroyuki; Orlandi, R.; Kean, K. R.*; Tsukada, Kazuaki; Toyoshima, Atsushi*; Asai, Masato; Sato, Tetsuya; Chiera, N. M.*; et al.
Physical Review C, 111(4), p.044609_1 - 044609_12, 2025/04
Times Cited Count:0Chudo, Hiroyuki; Yokoi, Naoto*; Matsuo, Mamoru; Harii, Kazuya*; Suzuki, Jun*; Imai, Masaki; Sato, Masahiro*; Maekawa, Sadamichi*; Saito, Eiji*
Physical Review Letters, 134(13), p.130603_1 - 130603_5, 2025/04
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Tanizaki, Shiho*; Kubo, Tomohiro*; Bito, Yosuke*; Mori, Shigeki*; Aoki, Hiroyuki; Sato, Kotaro*
RSC Sustainability (Internet), 3(4), p.1714 - 1720, 2025/04
Sato, Yuki; Kakuto, Takeshi*; Tanaka, Takayuki*; Shimano, Hiroyuki*
European Physical Journal; Special Topics, 10 Pages, 2025/00
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Sato, Takuto; Hino, Hideitsu*; Kusaka, Hiroyuki*
Atmospheric Science Letters, 25(12), p.e1279_1 - e1279_10, 2024/12
Times Cited Count:0 Percentile:0.00(Geochemistry & Geophysics)This study applies dynamic mode decomposition (DMD) to three-dimensional simulation results of urban heat island circulation (UHIC, which is horizontal circulation) and thermals (vertical convections). The aim of this study is to revisit how these phenomena coexist based on the characteristics of temporal changes in the flow field. We used DMD to obtain the dominant spatial patterns and information on temporal changes. One of the modes of horizontal wind, which does not change temporally (no oscillation or amplification), exhibits a spatial UHIC pattern. The unique feature of this UHIC mode is that there are small-scale striated structures (150-200 m) and large-scale convergence. The other modes are time-varying (oscillating and decaying) and represent smaller spatial-scale phenomena (150-250 m), such as thermals. The frequency of each mode takes various values, some of which are lower than the lifetime of thermals in accordance with the Deardorff convective scale (10 min). These low-frequency modes showed striated structures similar to that observed in the UHIC modes. These results suggest that UHIC and thermals deform each other through components that vary in long temporal scales.
Yamano, Hidemasa; Toyooka, Junichi; Sato, Hiroyuki; Sakaba, Nariaki
Nihon Genshiryoku Gakkai-Shi ATOMO, 66(12), p.607 - 611, 2024/12
This report mainly introduces trends in fast reactor development in Japan in addition to introducing overseas development trends for major developing countries.
Sako, Hiroyuki; Ichikawa, Masaya; Naruki, Megumi; Sakaguchi, Takao; Sato, Susumu; 12 of others*
Journal of Subatomic Particles and Cosmology (Internet), 1-2, p.100012_1 - 100012_7, 2024/11
Morita, Keisuke; Aoki, Takeshi; Shimizu, Atsushi; Sato, Hiroyuki
Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 6 Pages, 2024/11
Kusaka, Hiroyuki*; Ikeda, Ryosaku*; Sato, Takuto; Iizuka, Satoru*; Boku, Taisuke*
Journal of Advances in Modeling Earth Systems (Internet), 16(10), p.e2024MS004367_1 - e2024MS004367_38, 2024/10
Times Cited Count:2 Percentile:65.39(Meteorology & Atmospheric Sciences)To bridge the gaps between meteorological large-eddy simulation (LES) models and computational fluid dynamics (CFD) models for microscale urban climate simulations, the present study has developed a meteorological LES model for urban areas. This model simulates urban climates across both mesoscale (city scale) and microscale (city-block scale). The paper offers an overview of this LES model, which distinguishes itself from standard numerical weather prediction models by resolving buildings and trees at the microscale simulations. It also differs from standard CFD models by accounting for atmospheric stratification and physical processes. Noteworthy features of this model include: (a) the calculation of long- and short-wave radiations in three dimensions, incorporating multiple reflections within urban canopy layers using the radiosity method, and accounting for building and tree shadows in the simulations; (b) the provision of various heat stress indices (Universal Thermal Climate Index, Wet Bulb Globe Temperature, MRT, THI); (c) the assessment of the efficacy of heat stress mitigation measures such as dry-mist spraying, roadside trees, cool pavements, and green/cool roofs strategies; (d) the capability to run on supercomputers, with the code parallelized in a three-dimensional manner, and the model can also run on a graphics processing unit cluster. Following the introduction of this model, the study confirms its basic performance through various numerical experiments, including simulations of thermals in the convective boundary layer, coherent structure of turbulence over urban canopy, and thermal environment and heat stress indices in urban districts. The model developed in this study is intended to serve as a community tool for addressing both fundamental and applied studies in urban climatology.
Machida, Akihiko*; Saito, Hiroyuki*; Sugimoto, Hidehiko*; Hattori, Takanori; Sano, Asami; Endo, Naruki*; Katayama, Yoshinori*; Iizuka, Riko*; Sato, Toyoto*; Matsuo, Motoaki*; et al.
Nature Communications (Internet), 15, p.8861_1 - 8861_2, 2024/10
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)In our previous article (Nature Commun. 5, 5063 (2014)), the site occupancies of D atoms dissolved in an fcc Fe metal lattice were investigated via Rietveld refinement of neutron powder diffraction patterns collected at 988 K and 6.3 GPa. The fcc metal lattice has two interstitial sites available for accommodating D atoms: octahedral and tetrahedral sites. The Rietveld refinement revealed that D atoms occupied mainly the octahedral sites with occupancy of 0.532 and slightly the tetrahedral sites with occupancy of 0.056. Subsequent density-functional-theory (DFT) calculations by Antonov (Phys. Rev. Mater. 2019)) showed that the occupation energy on the tetrahedral site was significantly higher than that on the octahedral site; the tetrahedral site occupation was unlikely to occur even at temperatures as high as 988 K. We reexamined the site occupancies of D-atom by Rietveld refinement including extinction correction. As a result, the octahedral occupancy was increased to 0.60 and the tetrahedral occupancy was reduced to zero. The occupation of only the octahedral site for D atom is consistent with the DFT calculation, although in contrast to the previous results.
Aoki, Takeshi; Hasegawa, Takeshi; Kurahayashi, Kaoru; Nomoto, Yasunobu; Shimizu, Atsushi; Sato, Hiroyuki; Sakaba, Nariaki
Proceedings of 11th International Topical Meeting on High Temperature Reactor Technology (HTR 2024), 6 Pages, 2024/10
Japan Atomic Energy Agency (JAEA) is planning to perform a test named HTTR heat application test coupling HTTR (High temperature engineering test reactor) and a hydrogen production plant. The present study reports results of the safety design and safety analysis for HTTR heat application test facility. As a safety design, safety classification of structures, systems, and components was defined in the test facility based on their safety functions. As a preliminary safety analysis, a thermal-hydraulic analysis was performed with RELAP5 code. The safety analysis revealed that newly identified events for HTTR heat application test facility except for the rupture of heat transfer tube of steam generator was enveloped by the licensing basis events in conventional HTTR. The preliminary analysis proved that the safety criteria is satisfied in the candidate of licensing basis event.
Ichikawa, Yudai; Fujita, Manami; Hasegawa, Shoichi; Imai, Kenichi*; Nanamura, Takuya; Naruki, Megumi; Sato, Susumu; Sako, Hiroyuki; Tamura, Hirokazu; Tanida, Kiyoshi; et al.
Progress of Theoretical and Experimental Physics (Internet), 2024(9), p.091D01_1 - 091D01_13, 2024/09
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Nagatsuka, Kentaro; Noguchi, Hiroki; Nagasumi, Satoru; Nomoto, Yasunobu; Shimizu, Atsushi; Sato, Hiroyuki; Nishihara, Tetsuo; Sakaba, Nariaki
Nuclear Engineering and Design, 425, p.113338_1 - 113338_11, 2024/08
Times Cited Count:4 Percentile:93.24(Nuclear Science & Technology)HTGR has a potential to contribute to decarbonization of hard-to-abate industries by supplying a large amount of hydrogen and high temperature heat or steam without carbon dioxide emission. JAEA has been conducting R&Ds for HTGR technologies with High Temperature Engineering Test Reactor (HTTR). This paper shows that HTTR's tests including the loss of core cooing test as a joint the OECD/NEA international research project and a HTTR heat application test plan which demonstrate hydrogen production by coupling the HTTR with a hydrogen production test facility. Additionally, aiming for operation start from the latter half of 2030s, the basic design of the HTGR demonstration reactor has been shown. The Japan's HTGR technology capabilities established by the HTTR project will be fully utilized for the construction of HTGR demonstration reactor.
Inaba, Yoshitomo; Sato, Hiroyuki; Sumita, Junya; Ohashi, Hirofumi; Nishihara, Tetsuo; Sakaba, Nariaki
Nihon Kikai Gakkai-Shi, 127(1267), p.25 - 28, 2024/06
Aiming to contribute to net-zero emissions through early social implementation of HTGRs, JAEA promote five projects: HTTR-Heat Application Test, HTGR Domestic Demonstration Reactor, UK HTGR Demonstration Program, UK HTGR Fuel Development Program, and Poland HTGR Research Reactor Basic Design. In addition to these five projects, this article provides an overview of the safety demonstration tests using HTTR.
Sato, Yuki; Kakuto, Takeshi*; Tanaka, Takayuki*; Shimano, Hiroyuki*; Morohashi, Yuko; Hatakeyama, Tomoyoshi*; Nakajima, Junsaku; Ishiyama, Masahiro
Nuclear Instruments and Methods in Physics Research A, 1063, p.169300_1 - 169300_7, 2024/06
Times Cited Count:3 Percentile:58.81(Instruments & Instrumentation)Noguchi, Hiroki; Sato, Hiroyuki; Nishihara, Tetsuo; Sakaba, Nariaki
Kagaku Kogaku, 88(5), p.211 - 214, 2024/05
High temperature gas-cooled reactor (HTGR), one of the next-generation innovative reactors, has an inherent safety and can generate very high-temperature heat which can be used for various heat application including hydrogen production. In Japan, Green Growth Strategy for Carbon Neutrality in 2050 and Basic Policy for the Realization of GX state the promotion of technology development necessary for mass and low-cost carbon-free hydrogen production and development and construction of next-generation innovative reactors including the HTGR for the decarbonization of industrial sectors. Based on these policies, JAEA has been conducted the world's first hydrogen production test using nuclear heat from an HTGR, in addition to verifying the excellent safety features of HTGR, and has also started to study the construction of an HTGR demonstration reactor in cooperation with the industrial community. This paper shows the current status of R&D of HTGR in Japan.
Sakurai, Hirohisa*; Kurebayashi, Yutaka*; Suzuki, Soichiro*; Horiuchi, Kazuho*; Takahashi, Yui*; Doshita, Norihiro*; Kikuchi, Satoshi*; Tokanai, Fuyuki*; Iwata, Naoyoshi*; Tajima, Yasushi*; et al.
Physical Review D, 109(10), p.102005_1 - 102005_18, 2024/05
Times Cited Count:0 Percentile:0.00(Astronomy & Astrophysics)Secular variations of galactic cosmic rays (GCRs) are inseparably associated with the galactic activities and should reflect the environments of the local galactic magnetic field, interstellar clouds, and nearby supernova remnants. The high-energy muons produced in the atmosphere by high-energy GCRs can penetrate deep underground and generate radioisotopes in the rock. As long lived radionuclides such as Be and
Al have been accumulating in these rocks, concentrations of
Be and
Al can be used to estimate the long-term variations in high-energy muon yields, corresponding to those in the high-energy GCRs over a few million years. This study measured the production cross sections for muon induced
Be and
Al by irradiating positive muons with the momentum of 160 GeV/c on the synthetic silica plates and the granite core at the COMPASS experiment line in CERN SPS. In addition, it the contributions of the direct muon spallation reaction and the nuclear reactions by muon-induced particles on the production of long lived radionuclides in the rocks were clarified.