検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams

Bolton, P.; Borghesi, M.*; Brenner, C.*; Carroll, D. C.*; De Martinis, C.*; Fiorini, F.*; Flacco, A.*; Floquet, V.*; Fuchs, J.*; Gallegos, P.*; et al.

Physica Medica; European Journal of Medical Physics, 30(3), p.255 - 270, 2014/05

 被引用回数:73 パーセンタイル:88.97(Radiology, Nuclear Medicine & Medical Imaging)

Suitable instrumentation for laser-accelerated proton (ion) beams is critical to the development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that it forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on "Instrumentation for Diagnostics and Control of Laser-accelerated Proton (ion) Beams" in Abingdon, UK. It includes radiochromic film (RCF), image plate (IP), the micro-channel plate (MCP), the Thomson spectrometer, prompt inline scintillation, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed.

論文

Laser ion acceleration for hadron therapy

Bulanov, S. V.; Wilkens, J. J.*; Esirkepov, T. Z.; Korn, G.*; Kraft, G.*; Kraft, S. D.*; Molls, M.*; Khoroshkov, V. S.*

Physics-Uspekhi, 57(12), p.1149 - 1179, 2014/00

 被引用回数:97 パーセンタイル:84.8(Physics, Multidisciplinary)

The paper examines the prospects of using laser plasma as a source of high-energy ions for the purposes of hadron beam therapy - possibility which is expected not only on theoretical grounds but also on experimental grounds (ions are routinely observed to be accelerated in the interaction of high-power laser radiation with matter). Compared to therapy accelerators like cyclotrons, laser technology is advantageous in that it is more compact and is simpler in delivering ions from the accelerator to the treatment room. Special target designs allow the radiation therapy requirements on ion beam quality to be satisfied.

2 件中 1件目~2件目を表示
  • 1