Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 106

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Microbially formed Mn(IV) oxide as a novel adsorbent for removal of Radium

Tanaka, Kazuya; Yamaji, Keiko*; Masuya, Hayato*; Tomita, Jumpei; Ozawa, Mayumi*; Yamasaki, Shinya*; Tokunaga, Kohei; Fukuyama, Kenjin*; Ohara, Yoshiyuki*; Maamoun, I.*; et al.

Chemosphere, 355, p.141837_1 - 141837_11, 2024/05

In this study, biogenic Mn(IV) oxide was applied to remove Ra from mine water collected from a U mill tailings pond in the Ningyo-toge center. Just 7.6 mg of biogenic Mn(IV) oxide removed more than 98% of the $$^{226}$$Ra from 3 L of mine water, corresponding to a distribution coefficient of 10$$^{7.4}$$ mL/g for Ra at pH 7. The obtained value was convincingly high for practical application of biogenic Mn(IV) oxide in water treatment.

Journal Articles

Summary results of subsidy program for the "Project of Decommissioning, Contaminated Water and Treated Water Management (Development of Analysis and Estimation Technologies for Characterization of Fuel Debris (Development of Estimation Technologies of RPV Damaged Condition, etc.) in 2022JFY

Yamashita, Takuya; Shimomura, Kenta; Nagae, Yuji; Yamaji, Akifumi*; Mizokami, Shinya; Mitsugi, Takeshi; Koyama, Shinichi

Hairo, Osensui, Shorisui Taisaku Jigyo Jimukyoku Homu Peji (Internet), 53 Pages, 2023/10

JAEA performed the subsidy program for the "Project of Decommissioning, Contaminated Water and Treated Water Management (Development of Analysis and Estimation Technologies for Characterization of Fuel Debris (Development of Estimation Technologies of RPV Damaged Condition, etc.) in 2022JFY. This presentation summarized briefly the results of the project, which will be available shortly on the website of Management Office for the Project of Decommissioning, Contaminated Water and Treated Water Management.

Journal Articles

Estimation of long-term ex-vessel debris cooling behavior in Fukushima Daiichi Nuclear Power Plant unit 3

Sato, Ikken; Yamaji, Akifumi*; Li, X.*; Madokoro, Hiroshi

Mechanical Engineering Journal (Internet), 9(2), p.21-00436_1 - 21-00436_17, 2022/04

Journal Articles

Fe, Mn and $$^{238}$$U accumulations in ${it Phragmites australis}$ naturally growing at the mill tailings pond; Iron plaque formation possibly related to root-endophytic bacteria producing siderophores

Nakamoto, Yukihiro*; Doyama, Kohei*; Haruma, Toshikatsu*; Lu, X.*; Tanaka, Kazuya; Kozai, Naofumi; Fukuyama, Kenjin; Fukushima, Shigeru; Ohara, Yoshiyuki; Yamaji, Keiko*

Minerals (Internet), 11(12), p.1337_1 - 1337_17, 2021/12

 Times Cited Count:2 Percentile:21.11(Geochemistry & Geophysics)

Mine drainage is a vital water problem in the mining industry worldwide because of the heavy metal elements and low pH. Rhizofiltration using wetland plants is an appropriate method to remove heavy metals from the water via accumulation in the rhizosphere. ${it Phragmites australis}$ is one of the candidate plants for this method because of metal accumulation, forming iron plaque around the roots. At the study site, which was the mill tailings pond in the Ningyo-toge uranium mine, ${it P. australis}$ has been naturally growing since 1998. The results showed that ${it P. australis}$ accumulated Fe, Mn, and $$^{238}$$U in the nodal roots without/with iron plaque compared with other plant tissues. Among the 837 bacterial colonies isolated from nodal roots, 88.6% showed siderophore production activities. Considering iron plaque formation around ${it P. australis}$ roots, we hypothesized that microbial siderophores might influence iron plaque formation because bacterial siderophores have catechol-like functional groups. The complex of catechol or other phenolics with Fe was precipitated due to the networks between Fe and phenolic derivatives. The experiment using bacterial products of root endophytes, such as ${it Pseudomonas}$ spp. and ${it Rhizobium}$ spp., showed precipitation with Fe ions, and we confirmed that several ${it Ps.}$ spp. and ${it R.}$ spp. produced unidentified phenolic compounds. In conclusion, root-endophytic bacteria such as ${it Pseudomonas}$ spp. and ${it R.}$ spp., isolated from metal-accumulating roots of ${it P. australis}$, might influence iron plaque formation as the metal accumulation site. Iron plaque formation is related to tolerance in ${it P. australis}$, and ${it Ps.}$ spp. and ${it R.}$ spp. might indirectly contribute to tolerance.

JAEA Reports

Prediction of RPV lower structure failure and core material relocation behavior with MPS method (Contract research)

Yoshikawa, Shinji; Yamaji, Akifumi*

JAEA-Research 2021-006, 52 Pages, 2021/09

JAEA-Research-2021-006.pdf:3.89MB

In Fukushima Daiichi Nuclear Power Station (referred to as "FDNPS" hereafter) unit2 and unit3, failure of the reactor pressure vessel (RPV) and relocation of some core materials (CRD piping elements and upper tie plate, etc.) to the pedestal region have been confirmed. In boiling water reactors (BWRs), complicated core support structures and control rod drive mechanisms are installed in the RPV lower head and its upper and lower regions, so that the relocation behavior of core materials to pedestal region is expected to be also complicated. The Moving Particle Semi-implicit (MPS) method is expected to be effective in overviewing the relocation behavior of core materials in complicated RPV lower structure of BWRs, because of its Lagrangian nature in tracking complex interfaces. In this study, for the purpose of RPV ablation analysis of FDNPS unit2 and unit3, rigid body model, parallelization method and improved calculation time step control method were developed in FY 2019 and improvement of pressure boundary condition treatment, stabilization of rigid body model, and calculation cost reduction of debris bed melting simulation were achieved in FY2020. These improvements enabled sensitivity analyses of melting, relocation and re-distribution behavior of deposited solid debris in RPV lower head on various cases, within practical calculation cost. As a result of the analyses of FDNPS unit2 and unit3, it was revealed that aspect (particles/ingots) and distribution (degree of stratification) of solidified debris in lower plenum have a great impact on the elapsed time of the following debris reheat and partial melting and on molten pool formation process, further influencing RPV lower head failure behavior and fuel debris discharging behavior.

Journal Articles

Plutonium dioxide particle imaging using a high-resolution alpha imager for radiation protection

Morishita, Yuki; Kurosawa, Shunsuke*; Yamaji, Akihiro*; Hayashi, Masateru*; Sasano, Makoto*; Makita, Taisuke*; Azuma, Tetsushi*

Scientific Reports (Internet), 11(1), p.5948_1 - 5948_11, 2021/03

AA2020-0761.pdf:1.59MB

 Times Cited Count:2 Percentile:29.53(Multidisciplinary Sciences)

The internal exposure of workers who inhale plutonium dioxide particles in nuclear facilities is a crucial matter for human protection from radiation. To determine the activity median aerodynamic diameter values at the working sites of nuclear facilities in real time, we developed a high-resolution alpha imager using a ZnS(Ag) scintillator sheet, an optical microscope, and an electron-multiplying charge-coupled device camera. Then, we designed and applied a setup to measure a plutonium dioxide particle and identify the locations of the individual alpha particles in real time. Employing a Gaussian fitting, we evaluated the average spatial resolution of the multiple alpha particles was evaluated to be 16.2 umFWHM with a zoom range of 5 x. Also, the spatial resolution for the plutonium dioxide particle was 302.7 umFWHM due to the distance between the plutonium dioxide particle and the ZnS(Ag) scintillator. The influence of beta particles was negligible, and alpha particles were discernible in the alpha-beta particle contamination. The equivalent volume diameter of the plutonium dioxide particle was calculated from the measured count rate. These results indicate that the developed alpha imager is effective in the plutonium dioxide particle measurements at the working sites of nuclear facilities for internal exposure dose evaluation.

Journal Articles

Development of ${it spatiotemporal}$ measurement and analysis techniques in X-ray photoelectron spectroscopy; From NAP-HARPES to 4D-XPS

Toyoda, Satoshi*; Yamamoto, Tomoki*; Yoshimura, Masashi*; Sumida, Hirosuke*; Mineoi, Susumu*; Machida, Masatake*; Yoshigoe, Akitaka; Suzuki, Satoru*; Yokoyama, Kazushi*; Ohashi, Yuji*; et al.

Vacuum and Surface Science, 64(2), p.86 - 91, 2021/02

We have developed ${it spatiotemporal}$ measurement and analysis techniques in X-ray photoelectron spectroscopy. To begin with, time-division depth profiles of gate stacked film interfaces have been achieved by NAP-HARPES (Near Ambient Pressure Hard X-ray Angle-Resolved Photo Emission Spectroscopy) data. We then have promoted our methods to quickly perform peak fittings and depth profiling from time-division ARPES data, which enables us to realize 4D-XPS analysis. It is found that the traditional maximum entropy method (MEM) combined with Jackknife averaging of sparse modeling in NAP-HARPES data is effective to perform dynamic measurement of depth profiles with high precision.

Journal Articles

Chapter 18, Moving particle semi-implicit method

Wang, Z.; Duan, G.*; Koshizuka, Seiichi*; Yamaji, Akifumi*

Nuclear Power Plant Design and Analysis Codes, p.439 - 461, 2021/00

Journal Articles

FEMAXI-7 analysis for modeling benchmark for FeCrAl

Yamaji, Akifumi*; Susuki, Naomichi*; Kaji, Yoshiyuki

IAEA-TECDOC-1921, p.199 - 209, 2020/07

The thermo-physical models and irradiation behavior of FeCrAl as defined by the benchmark organizer have been implemented to FEMAXI-7. Analyses were carried out firstly for the specified normal operation condition. Then, some sensitivity analyses were carried out with different assumptions and model parameters. Under the normal operating condition, the predicted FeCrAl cladded fuel performance was similar to that of Zry cladded fuel with notable, but not major difference regarding late gap closure. Under the simulated LOCA conditions, the burst pressure could be evaluated. The predicted cladding creep strain at burst was mainly attributed to creep strain with negligible plastic strain. Overall, FEMAXI-7 analyses have demonstrated excellent robustness and flexibility in modeling FeCrAl-UO$$_{2}$$ system under normal and LOCA conditions.

Journal Articles

Overview of accident-tolerant fuel R&D program in Japan

Yamashita, Shinichiro; Ioka, Ikuo; Nemoto, Yoshiyuki; Kawanishi, Tomohiro; Kurata, Masaki; Kaji, Yoshiyuki; Fukahori, Tokio; Nozawa, Takashi*; Sato, Daiki*; Murakami, Nozomu*; et al.

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.206 - 216, 2019/09

After the nuclear accident at Fukushima Daiichi Power Plant, research and development (R&D) program for establishing technical basis of accident-tolerant fuel (ATF) started from 2015 in Japan. Since then, both experimental and analytical studies necessary for designing a new light water reactor (LWR) core with ATF candidate materials are being conducted within the Japanese ATF R&D Consortium for implementing ATF to the existing LWRs, accompanying with various technological developments required. Until now, we have accumulated experimental data of the candidate materials by out-of-pile tests, developed fuel evaluation codes to apply to the ATF candidate materials, and evaluated fuel behavior simulating operational and accidental conditions by the developed codes. In this paper, the R&D progresses of the ATF candidate materials considered in Japan are reviewed based on the information available such as proceedings of international conference and academic papers, providing an overview of ATF program in Japan.

Journal Articles

Benchmark of fuel performance codes for FeCrAl cladding behavior analysis

Pastore, G.*; Gamble, K. A.*; Cherubini, M.*; Giovedi, C.*; Marino, A.*; Yamaji, Akifumi*; Kaji, Yoshiyuki; Van Uffelen, P.*; Veshchunov, M.*

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.1038 - 1047, 2019/09

Oxidation-resistant iron-chromium-aluminum (FeCrAl) steels have been proposed for application as cladding materials in light water reactor fuel rods with improved accident tolerance. Within the Coordinated Research Project ACTOF of the International Atomic Energy Agency (IAEA), a fuel performance modeling benchmark for FeCrAl cladding behavior was conducted. During this effort, calculations were performed with various fuel performance codes for a set of fuel rod problems with FeCrAl steel as cladding material, and results were compared to each other.

Journal Articles

A Laboratory investigation of microbial degradation of simulant fuel debris by oxidizing microorganisms

Liu, J.; Dotsuta, Yuma; Kitagaki, Toru; Kozai, Naofumi; Yamaji, Keiko*; Onuki, Toshihiko

Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR 2019) (Internet), 2 Pages, 2019/05

To decommission the Fukushima Daiichi Nuclear Power Plant (FDNPP), it is necessary to estimate the current status of fuel debris and predicate the possible change under various condition. Some microorganisms may enter the plant due to the seawater injection after accident and future defueling activity. In this study, microbial influence on fuel debris under aerobic condition was experimentally investigated. By culturing some bacteria in the presence of simulant fuel debris in liquid medium, the microbial degradation of fuel debris was observed.

Journal Articles

Root-endophytic Chaetomium cupreum chemically enhances aluminium tolerance in $$Miscanthus sinensis$$ via increasing the aluminium detoxicants, chlorogenic acid and oosporein

Haruma, Toshikatsu*; Yamaji, Keiko*; Ogawa, Kazuyoshi*; Masuya, Hayato*; Sekine, Yurina; Kozai, Naofumi

PLOS ONE (Internet), 14(2), p.e0212644_1 - e0212644_16, 2019/02

 Times Cited Count:24 Percentile:80.13(Multidisciplinary Sciences)

Miscanthus sinensis Andersson is a pioneer plant species that grows naturally at mining sites. $$Miscanthus sinensis$$ can detoxify aluminium (Al) by producing phytosiderophores. Root-endophytic Chaetomium cupreum, which produces microbial siderophores, enhances Al tolerance in M. sinensis. We identified the siderophore produced by C. cupreum as oosporein. It was revealed that oosporein could detoxify Al. Inoculation test of C. cupreum onto M. sinensis in acidic mine soil showed that C. cupreum promoted seedling growth, and enhanced Al tolerance.

Journal Articles

Three-dimensional numerical study on pool stratification behavior in molten corium-concrete interaction (MCCI) with MPS method

Li, X.; Sato, Ikken; Yamaji, Akifumi*; Duan, G.*

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 8 Pages, 2018/07

Molten corium-concrete interaction (MCCI) is an important ex-vessel phenomenon that could happen during the late phase of a hypothetical severe accident in a light water reactor. In the present study, a three-dimensional (3-D) numerical study has been performed to simulate COMET-L3 test carried out by KIT with a stratified molten pool configuration of simulant materials with improved MPS method. The heat transfer between corium/crust/concrete was modeled with heat conduction between particles. Moreover, the potential influence of the siliceous aggregates was also investigated by setting up two different case studies since there was previous study indicating that siliceous aggregates in siliceous concrete might contribute to different axial and radial concrete ablation rates. The simulation results have indicated that metal melt as corium in MCCI can have completely different characteristics regarding concrete ablation pattern from that of oxidic corium, which needs to be taken into consideration when assessing the containment melt-through time in severe accident management.

Journal Articles

Overview of Japanese development of accident tolerant FeCrAl-ODS fuel claddings for BWRs

Sakamoto, Kan*; Hirai, Mutsumi*; Ukai, Shigeharu*; Kimura, Akihiko*; Yamaji, Akifumi*; Kusagaya, Kazuyuki*; Kondo, Takao*; Yamashita, Shinichiro

Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017) (USB Flash Drive), 7 Pages, 2017/09

This paper will show the overview of current status of development of accident tolerant FeCrAl-ODS fuel claddings for BWRs (boiling water reactors) in the program sponsored and organized by the Ministry of Economy, Trade and Industry (METI) of Japan. This program is being carried out to create the technical basis for the practical use of the accident tolerant fuels and the other components in LWRs through multifaceted activities. In the development of FeCrAl-ODS fuel claddings both the experimental and the analytical studies have been performed. The acquisition and accumulation of key material properties of FeCrAl-ODS fuel claddings were conducted by using bar, sheet and tube shaped FeCrAl-ODS materials fabricated in this program to support the evaluations in the analytical studies. A neutron irradiation test was also started in the ORNL High Flux Isotope Reactor (HFIR) to examine the effect of neutron irradiation on the mechanical properties.

Journal Articles

FEMAXI-7 prediction of the behavior of BWR-type accident tolerant fuel rod with FeCrAl-ODS steel cladding in normal condition

Yamaji, Akifumi*; Yamasaki, Daiki*; Okada, Tomoya*; Sakamoto, Kan*; Yamashita, Shinichiro

Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017) (USB Flash Drive), 10 Pages, 2017/09

Features of the accident tolerant fuel performance were evaluated with FEMAXI-7 when the current Zircaloy(Zry) cladding is replaced with FeCrAl-ODS steel cladding (a type of oxide dispersion strengthened steel being developed under the Project on Development of Technical Basis for Safety Improvement at Nuclear Power Plants by Ministry of Economy, Trade and Industry (METI) of Japan) for BWR 9$$times$$9 type fuel rod. In particular, influences of the creep strain rate and thickness of the ODS cladding on the fuel temperature, fission gas release rate (FGR) and pellet-cladding mechanical interaction (PCMI) are investigated.

Journal Articles

Root endophytic bacteria of a $$^{137}$$Cs and Mn accumulator plant, ${{it Eleutherococcus sciadophylloides}}$, increase $$^{137}$$Cs and Mn desorption in the soil

Yamaji, Keiko*; Nagata, Satoshi*; Haruma, Toshikatsu*; Onuki, Toshihiko; Kozaki, Tamotsu*; Watanabe, Naoko*; Namba, Kenji*

Journal of Environmental Radioactivity, 153, p.112 - 119, 2016/03

 Times Cited Count:20 Percentile:53.98(Environmental Sciences)

Of the 463 strains that we isolated, 107 (23.1%) produced the siderophores. We found $$^{137}$$Cs and Mn desorption concomitant with Al and Fe desorption. These results suggest that root endophytes of $$^{137}$$Cs accumulator plant produce siderophores, resulting in the desorption of $$^{137}$$Cs from the contaminated soil collected at Fukushima, Japan.

Journal Articles

Experiments of coolant accumulation in SG U tube and analytical model development

Yamaji, Tatsuya*; Koizumi, Yasuo; Yamazaki, Kohei*; Otake, Hiroyasu*; Hasegawa, Koji*; Onuki, Akira*; Kanamori, Daisuke*

Konsoryu Shimpojiumu 2015 Koen Rombunshu (USB Flash Drive), 2 Pages, 2015/08

Experiments of condensing counter-current two-phase flow in a vertical pipe were performed. This study was intended to examine water accumulation in the up-flow side of steam generator U-tubes of a PWR during the reflux cooling stage of a small break LOCA. It has been apprehended that the water accumulation may result in temporary core liquid level depression. The inner diameter and the length of a test flow channel used in the experiments were 18 mm and 4 m, respectively. The experiments were performed by using steam and water at 0.1 MPa. Two kinds of experiments were conducted; visualization experiments by using a transparent test section and quantitative water accumulation evaluation experiments by using a brass test section. Even if water on the inner surface of the test pipe could not flow downward at the lower portion of the test pipe, a part of water became to flow downward at the upper portion of the test pipe since steam velocity decreased because of condensation. Thus, two-phase mixture level was formed in the upper portion of the test pipe, which resulted in the water accumulation in the pipe. The model to predict the water accumulation was proposed. It predicted the water accumulation reasonably well.

Journal Articles

Evaluation of large 3600 MWth sodium-cooled fast reactor OECD neutronic benchmarks

Buiron, L.*; Rimpault, G*; Fontaine, B.*; Kim, T. K.*; Stauff, N. E.*; Taiwo, T. A.*; Yamaji, Akifumi*; Gulliford, J.*; Fridmann, E.*; Pataki, I.*; et al.

Proceedings of International Conference on the Physics of Reactors; The Role of Reactor Physics toward a Sustainable Future (PHYSOR 2014) (CD-ROM), 16 Pages, 2014/09

Within the activities of the Working Party on Scientific Issues of Reactor Systems (WPRS) of the OECD, an international collaboration is ongoing on the neutronic analyses of several Generation-IV Sodium-cooled Fast Reactor (SFR) concepts. This paper summarizes the results obtained by participants from institutions of different countries (ANL, CEA, ENEA, HZDR, JAEA, CER, KIT, UIUC) for the large core numerical benchmarks. These results have been obtained using different calculation methods and analysis tools to estimate the core reactivity and isotopic composition evolution, neutronic feedbacks and power distribution. For the different core concepts analyzed, a satisfactory agreement was obtained between participants despite the different calculation schemes used. A good agreement was generally obtained when comparing compositions after burnup, the delayed neutron fraction, the Doppler coefficient, and the sodium void worth. However, some noticeable discrepancies between the k-effective values were observed and are explained in this paper. These are mostly due to the different neutronic libraries employed (JEFF3.1, ENDFB7.0 or JENDL-4.0) and to a lesser extent the calculations methods.

Journal Articles

Development of evaluation method with X-ray tomography for material property of IG-430 graphite for VHTR/HTGR

Sumita, Junya; Shibata, Taiju; Fujita, Ichiro*; Kunimoto, Eiji*; Yamaji, Masatoshi*; Eto, Motokuni*; Konishi, Takashi*; Sawa, Kazuhiro

Nuclear Engineering and Design, 271, p.314 - 317, 2014/05

 Times Cited Count:11 Percentile:64.16(Nuclear Science & Technology)

In this study, in order to develop evaluation method for material properties and to evaluate the irradiation-induced property changes under higher neutron doses for IG-430, the oxidation and densification effects on elastic modulus of IG-430 were investigated. Moreover, the correlation of the microstructure based on the X-ray tomography images and the material properties was discussed. It was shown that the elastic modulus of the densified graphite depends on only the closed pores and it is possible to evaluate the material properties of graphite by using X-ray tomography method. However, it is necessary to take into account of the change in the number and shape of closed pores in the grain to simulate the elastic modulus of the highly oxidized and irradiated materials by the homogenization analysis.

106 (Records 1-20 displayed on this page)