Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 282

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Calculation code of output current for self-powered radiation detector; Algorithm construction and comparison of calculation results

Shibata, Hiroshi; Takeuchi, Tomoaki; Seki, Misaki; Shibata, Akira; Nakamura, Jinichi; Ide, Hiroshi

JAEA-Data/Code 2021-018, 42 Pages, 2022/03

JAEA-Data-Code-2021-018.pdf:2.78MB
JAEA-Data-Code-2021-018-appendix(CD-ROM).zip:0.15MB

Japan Materials Testing Reactor (JMTR) in Oarai Research and Development Institute of the Japan Atomic Energy Agency has been developing various reactor materials, irradiation techniques and instruments for more than 30 years. Among them, the development of self-powered neutron detectors (SPNDs) and gamma detectors (SPGDs) has been carried out, and several research results have been reported. However, most of the results are based on the design study of the detector development and the results of in-core irradiation tests and gamma irradiation tests using Cobalt-60. In this report, a numerical code is developed based on the paper "Neutron and Gamma-Ray Effects on Self-Powered In-Core Radiation Detectors" written by H.D. Warren and N.H. Shah in 1974, in order to theoretically evaluate the self-powered radiation detectors.

Journal Articles

Development of proton beam control technology for transmutation characteristic test

Takei, Hayanori

Isotope News, (779), p.11 - 15, 2022/02

The Japan Atomic Energy Agency (JAEA) has designed a Transmutation Physics Experimental Facility (TEF-P) as an experimental facility in the Japan Proton Accelerator Research Complex (J-PARC). The TEF-P is a critical assembly driven by a low-power proton beam, a maximum of 10 W, which is extracted from a high-power beam source, such as 250 kW of 400 MeV proton beam of the J-PARC Linac. To extract such a low-power proton beam from the high-power proton beam, we developed a laser charge exchange (LCE) device and employed its technique, which is one of the non-contact beam extraction techniques. For the proof of performance of the LCE device to the TEF-P, a low-power proton beam was extracted using a negative-hydrogen Linac having an energy of 3 MeV, and a bright laser. This paper summarizes the experimental results.

Journal Articles

Status of J-PARC accelerators

Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Toyama, Takeshi*; Yamamoto, Noboru*; et al.

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1235 - 1239, 2019/07

After the summer shutdown in 2018, the J-PARC restarted user operation in late October. While beam power to the Materials and Life Science Experimental Facility (MLF) was 500 kW as before the summer shutdown, linac beam current was increased from 40 to 50 mA. Operation of the Main Ring (MR) was suspended due to the modification and/or maintenance of the Superkamiokande (neutrino detector) and Hadron experimental facility. The user operation was resumed in the middle of February for the Hadron experimental facility at 51 kW. But on March 18, one of the bending magnets in the beam transport line to the MR had a failure. It was temporary recovered and restored beam operation on April 5, but the failure occurred again on April 24 and the beam operation of the MR was suspended. In the fiscal year of 2018, the availabilities for the MLF, neutrino and hadron facilities are 94%, 86%, and 74%, respectively.

JAEA Reports

Development of the Unified Cross-section Set ADJ2017

Yokoyama, Kenji; Sugino, Kazuteru; Ishikawa, Makoto; Maruyama, Shuhei; Nagaya, Yasunobu; Numata, Kazuyuki*; Jin, Tomoyuki*

JAEA-Research 2018-011, 556 Pages, 2019/03

JAEA-Research-2018-011.pdf:19.53MB
JAEA-Research-2018-011-appendix1(DVD-ROM).zip:433.07MB
JAEA-Research-2018-011-appendix2(DVD-ROM).zip:580.12MB
JAEA-Research-2018-011-appendix3(DVD-ROM).zip:9.17MB

We have developed a new unified cross-section set ADJ2017, which is an improved version of the unified cross-section set ADJ2010 for fast reactors. The unified cross-section set is used for reflecting information of C/E values (analysis / experiment values) obtained by integral experiment analyses; the values are stored in the standard database for FBR core design via the cross-section adjustment methodology, which integrates with the information such as uncertainty (covariance) of nuclear data, uncertainty of integral experiment / analysis, sensitivity of integral experiment with respect to nuclear data. The ADJ2017 is based on Japan's latest nuclear data library JENDL-4.0 as in the previous version of ADJ2010, and it incorporates more information on integral experimental data sets related to minor actinides (MAs) and degraded plutonium (Pu). In the creation of ADJ2010, a total of 643 integral experimental data sets were analyzed and evaluated, and 488 of the integral experimental data sets were finally selected to be used for the cross-section adjustment. In contrast, we have evaluated a total of 719 data sets, and eventually adopted 620 integral experimental data sets to create ADJ2017. ADJ2017 shows almost the same performance as ADJ2010 for the main neutronic characteristics of conventional sodium-cooled MOX-fuel fast reactors. In addition, for the neutronic characteristics related to MA and degraded Pu, ADJ2017 improves the C/E values of the integral experimental data sets, and reduces the uncertainty induced by the nuclear data. ADJ2017 is expected to be widely used in the analysis and design research of fast reactors. Moreover, it is expected that the integral experimental data sets used for ADJ2017 can be utilized as a standard database of FBR core design.

Journal Articles

Development of a new modular switch using a next-generation semiconductor

Takayanagi, Tomohiro; Ueno, Tomoaki*; Horino, Koki*

Journal of Physics; Conference Series, 1067, p.082019_1 - 082019_6, 2018/10

 Times Cited Count:1 Percentile:46.67(Physics, Particles & Fields)

Journal Articles

Status of J-PARC accelerators

Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Yamamoto, Noboru*; Koseki, Tadashi*

Proceedings of 15th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1317 - 1321, 2018/08

After the summer shutdown in 2017, the J-PARC restarted user operation in late October. The Materials and Life Science Experimental Facility (MLF) used a spare target and the beam power was limited to 150-200kW. The target was replaced with a new one in the summer shutdown. The beam power was for user operation gradually increased from 300 kW to 500 kW. We have successfully demonstrated 1MW 1hour operation in July 2018. The beam power for the neutrino experimental facility (NU) was 440 kW to 470 kW. The beam was delivered to the hadron experimental facility (HD) from January to February in 2018. The repetition rate of the main ring was shortened from 5.52 to 5.20 seconds, the beam power was increased from 44 to 50 kW. From March 2018, we delivered to the NU at 490 kW stably. In the fiscal year of 2017, the availabilities for the MLF, NU and HD are 93%, 89% and 66%, respectively.

Journal Articles

Beam extraction by the laser charge exchange method using the 3-MeV LINAC in J-PARC

Takei, Hayanori; Hirano, Koichiro; Tsutsumi, Kazuyoshi; Meigo, Shinichiro

Plasma and Fusion Research (Internet), 13(Sp.1), p.2406012_1 - 2406012_6, 2018/03

The Japan Proton Accelerator Research Complex (J-PARC) has a plan to build the Transmutation Physics Experimental Facility (TEF-P), in which a 400-MeV negative proton (H$$^{-}$$) beam will be delivered from the J-PARC linac. Since the TEF-P requires a stable proton beam with a power of less than 10 W, a stable and meticulous beam extraction method is required to extract a small amount of the proton beam from the high power beam using 250 kW. To fulfil this requirement, the Laser Charge Exchange (LCE) method has been developed. To demonstrate the charge exchange of the H$$^{-}$$, a preliminary LCE experiment was conducted using a linac with energy of 3 MeV in J-PARC. As a result of the experiment, a charge-exchanged H$$^{+}$$ beam with a power of about 8 W equivalent and an accuracy of about 2% was obtained under the J-PARC linac beam condition.

Journal Articles

Status of J-PARC accelerators

Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Hori, Yoichiro*; Yamamoto, Noboru*; Koseki, Tadashi*

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1317 - 1321, 2017/12

After the summer shutdown in 2016, the J-PARC restarted user operation late in October for the neutrino experiments (NU) and early in November for the materials and life science experimental facility (MLF). The beam power for the NU was 420 kW in May 2016, but increased to 470 kW in February 2017 thanks to the change and optimization of operation parameters. For the hadron experimental facility (HD), we started beam tuning in April, but suspended by a failure of the electro static septum. After the treatment, we delivered beam at the power of 37 kW. We delivered beam at 150kW for the MLF. In the fiscal year of 2016, the linac, the 3 GeV synchrotron (RCS) and the MLF were stable and the availability was high at 93%. On the contrary, the main ring has several failures and the availabilities were 77% and 84% for NU and HD, respectively.

Journal Articles

Laser storage ring with high power for realization of laser stripping injection

Harada, Hiroyuki; Saha, P. K.; Yamane, Isao*; Kato, Shinichi; Kinsho, Michikazu; Irie, Yoshiro*

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.983 - 986, 2016/11

The high-intensity proton accelerator adopts a charge exchange injection scheme, which injects with exchanging from negative Hydrogen ion to proton by using carbon foil. This scheme can realize high intensity proton beam but the uncontrolled beam losses are caused by scattering between beams and the foil. Additionally, the collision may occur the foil beak. Therefore, a new injection scheme for higher intensity is needed as an alternative to the foil. In the J-PARC 3GeV RCS, we newly propose and develop a laser stripping injection scheme However, it is necessary that laser power is two order higher than latest laser one. To realize this big issue, we develop the laser storage ring, which can provide laser pulse of high repetition rate by recycling one. In this presentation, we will introduce the laser stripping injection scheme and describe the concept of the laser storage ring with high repetition rate.

Journal Articles

Yb:YAG thin-disk chirped pulse amplification laser system for intense terahertz pulse generation

Ochi, Yoshihiro; Nagashima, Keisuke; Maruyama, Momoko; Tsubouchi, Masaaki; Yoshida, Fumiko; Kono, Nanase; Mori, Michiaki; Sugiyama, Akira

Optics Express (Internet), 23(11), p.15057 - 15064, 2015/06

 Times Cited Count:25 Percentile:78.29(Optics)

We have developed a 1 kHz repetition picosecond laser system dedicated for intense terahertz (THz) pulse generation. The system comprises a chirped pulse amplification laser equipped with a Yb:YAG thin-disk amplifier. At room temperature, the Yb:YAG thin-disk regenerative amplifier provides pulses having energy of over 10 mJ and spectral bandwidth of 1.2 nm. The pulse duration achieved after passage through a diffraction grating pair compressor was 1.3 ps. By employing this picosecond laser as a pump source, THz pulses having a peak frequency of 0.3 THz and 4 $$mu$$J of energy were generated by means of optical rectification in an Mg-doped LiNbO$$_{3}$$ crystal.

Journal Articles

Development of radiation detectors for in-pile measurement

Takeuchi, Tomoaki; Otsuka, Noriaki; Shibata, Hiroshi; Nagata, Hiroshi; Endo, Yasuichi; Matsui, Yoshinori; Tsuchiya, Kunihiko

KAERI/GP-418/2015, p.110 - 112, 2015/00

$$gamma$$ irradiation experiments with a $$^{60}$$Co source were carried out for developing Self-Powered Gamma Detectors (SPGDs) with lead (Pb) emitter and Self-Powered Neutron Detectors (SPNDs) with Pt-40%Rh emitter prior to in-core irradiation experiments. The results showed the output currents of the SPGDs were proportional to the $$gamma$$ dose rate in the range from about 200-6000 Gy/h with about 10% accuracy. In the case of SPNDs, the output currents flowed in inverse direction and were an order of magnitude lower compared with that of the SPGDs. These different behaviors of the output currents are considered to be caused by the difference in the emitter sizes and the current component originated at the MI cables.

Journal Articles

Study of light output and response function of liquid organic scintillator for high-energy neutron spectrometry

Satoh, Daiki; Sato, Tatsuhiko; Endo, Akira; Matsufuji, Naruhiro*; Sato, Shinji*; Takada, Masashi*; Ishibashi, Kenji*

Nuclear Science Symposium Conference Record, 2005 IEEE, Vol.3, p.1288 - 1290, 2005/10

The response functions of a BC501A liquid organic scintillator have been measured for incidence of various charged particles to investigate the relationship between the kinetic energy of the charged particles and the light output of BC501A. The experiment was performed at Heavy-Ion Medical Accelerator in Chiba (HIMAC) utilizing spallation reactions by heavy ion bombardment on a graphite target. Charged particles incidental on BC501A were identified with the two-dimensional scatter plot of the time-of-flight and the light output. The light output of the BC501A scintillator was deduced as a function of the kinetic energy of the charged particles, and was compared with the semi-empirical formula. While the experimental data showed a good agreement with the formula for proton and deuteron, the data gave slightly larger values compared with the systematic trend for alpha particle.

JAEA Reports

Design of micro-fission chambers for ITER low power operations

Nishitani, Takeo; Yamauchi, Michinori*; Izumi, Mikio*; Kusama, Yoshinori

JAERI-Tech 2005-047, 34 Pages, 2005/09

JAERI-Tech-2005-047.pdf:6.75MB

no abstracts in English

Journal Articles

Current status of thermal/hydraulic feasibility project for reduced-moderation water reactor, 1; Large-scale thermal/hydraulic test

Tamai, Hidesada; Onuki, Akira; Kureta, Masatoshi*; Liu, W.; Sato, Takashi; Akimoto, Hajime

Proceedings of 2005 International Congress on Advances in Nuclear Power Plants (ICAPP '05) (CD-ROM), 8 Pages, 2005/05

no abstracts in English

JAEA Reports

Study on the application of CANDLE burnup strategy to several nuclear reactors, JAERI's nuclear research promotion program, H13-002 (Contract research)

Sekimoto, Hiroshi*

JAERI-Tech 2005-008, 111 Pages, 2005/03

JAERI-Tech-2005-008.pdf:15.9MB

The CANDLE burnup strategy is a new reactor burnup concept, where the distributions of fuel nuclide densities, neutron flux, and power density move with the same constant speed from bottom to top (or from top to bottom) of the core and without any change in their shapes. Therefore, any burnup control mechanisms are not required, and reactor characteristics do not change along burnup. The reactor is simple and safe. When this burnup scheme is applied to some neutron rich fast reactors, either natural or depleted uranium can be utilized as fresh fuel after second core and the bunrup of discharged fuel is about 40%. It means that the nuclear energy can be utilized for many hundreds years without new mining, enrichment and reprocessing, and the amount of spent fuel can be reduced considerably. Compared to fast reactors, application of CANDLE burnup to prismatic fuel high-temperature gas cooled reactors is very easy. In this report, the applications of CANDLE burnup to both these types of reactors are studied.

Journal Articles

Stabilization of beam power for long pulse operation on JT-60U negative-ion based NBI system

Honda, Atsushi; Kawai, Mikito; Okano, Fuminori; Oshima, Katsumi*; Numazawa, Susumu*; Oga, Tokumichi; Ikeda, Yoshitaka

Heisei-16-Nendo Osaka Daigaku Sogo Gijutsu Kenkyukai Hokokushu (CD-ROM), 4 Pages, 2005/03

no abstracts in English

Journal Articles

Validation of simplified evaluation models for first peak power, energy, and total fissions of a criticality accident in a nuclear fuel processing facility by TRACY experiments

Nomura, Yasushi*; Okuno, Hiroshi; Miyoshi, Yoshinori

Nuclear Technology, 148(3), p.235 - 243, 2004/12

 Times Cited Count:3 Percentile:23.45(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Evaluation of scale effects in tight-lattice bundles using subchannel analysis

Tamai, Hidesada; Yoshida, Hiroyuki; Masuko, Kenji*; Akimoto, Hajime

Proceedings of 4th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-4), p.230 - 236, 2004/12

no abstracts in English

Journal Articles

Feasible approach to the power reactor concept

Nishio, Satoshi

Purazuma, Kaku Yugo Gakkai-Shi, 80(11), p.944 - 948, 2004/11

Low aspect ratio tokamak power reactor with super-conducting toroidal field (TF) coils has been proposed. A center solenoid coil system and an inboard blanket were removed. The key point was how to find the engineering design solution of the TF coil system with the high field and high current density. The coil system with the center post radius of less than 1 m can generate the maximum field of $$sim$$ 20 T. This coil system causes a compact reactor concept, where the plasma major and minor radii of 3.5 m and 1.5 m, respectively and the fusion power of $$sim$$ 3 GW.

Journal Articles

Present status of 972MHz RF test-stand at JAERI

Hori, Toshihiko*; Chishiro, Etsuji; Yamazaki, Masayoshi*; Suzuki, Hiroyuki*; Hasegawa, Kazuo

Proceedings of 1st Annual Meeting of Particle Accelerator Society of Japan and 29th Linear Accelerator Meeting in Japan, p.212 - 214, 2004/08

no abstracts in English

282 (Records 1-20 displayed on this page)