Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Bispectral analysis applied to coherent floating potential fluctuations obtained in the edge plasmas on JFT-2M

Nagashima, Yoshihiko*; Ito, Kimitaka*; Ito, Sanae*; Fujisawa, Akihide*; Hoshino, Katsumichi; Takase, Yuichi*; Yagi, Masatoshi*; Ejiri, Akira*; Ida, Katsumi*; Shinohara, Koji; et al.

Plasma Physics and Controlled Fusion, 48(4), p.S1 - S15, 2006/04

 Times Cited Count:36 Percentile:75.28(Physics, Fluids & Plasmas)

This paper presents the results of bispectral analysis of floating potential fluctuations in the edge region of ohmically heated plasmas in the JFT-2M tokamak. Inside of the outermost magnetic surface,coherent modes were observed around the frequency of geodesic acoustic mode which is a kind of the zonal flow. The squared bicoherence shows significant nonlinear couplings between the coherent fluctuations and the background fluctuations (which are likely to contain drift wave turbulent fluctuations). The experimental results that the total bicoherence is proportional to the squared amplitude of the coherent fluctuation, and that the biphase of the coherent modes localizes around a constant value $$pi$$, are consistent with the theoretical prediction on the drift wave - zonal flow systems based on the Hasegawa-Mima model.

Journal Articles

First principles based simulations of instabilities and turbulence

Villard, L.*; Angelino, P.*; Bottino, A.*; Allfrey, S. J.*; Hatzky, R.*; Idomura, Yasuhiro; Sauter, O.*; Tran, T. M.*

Plasma Physics and Controlled Fusion, 46(12B), p.B51 - B62, 2004/12

 Times Cited Count:29 Percentile:66.78(Physics, Fluids & Plasmas)

This paper reviews the present status of recent first principles based plasma turbulence simulations, and gives quantitative discussions on influences of the v// nonlinearlity and the geometry effects in the gyrokinetic Poisson equaiton, which are ignored in the conventional approximations, on simulations results. Careful treatments of these effects enable turbulence simulations satisfying the conservation of the energy and the particle number. The new simulation disclosed new phenomena, and it is found that (1) turbulence spreading is induced by avalanche like phnemena consisting of bursty heat transport and local flattening of pressure profiles, and (2) nonlinearly driven E$$times$$B flows become global shear flows with scale lengths of about 30 ion gyro radii.

2 (Records 1-2 displayed on this page)
  • 1