Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

R&D on Accelerator Driven Nuclear Transmutation System (ADS) at J-PARC, 4; Proton beam technology and neutronics

Meigo, Shinichiro; Nakano, Keita; Iwamoto, Hiroki

Purazuma, Kaku Yugo Gakkai-Shi, 98(5), p.216 - 221, 2022/05

For the realization of accelerator-driven transmutation systems (ADS) and the construction of the ADS target test facility (TEF-T) at J-PARC, it is necessary to study the proton beam handling technology and neutronics for protons in the GeV energy region. Accordingly, the Nuclear Transmutation Division of J-PARC has studied these issues with using J-PARC's accelerator facilities, and so on. This paper introduces these topics.

JAEA Reports

Neutronic analysis of beam window and LBE of an Accelerator-Driven System

Nakano, Keita; Iwamoto, Hiroki; Nishihara, Kenji; Meigo, Shinichiro; Sugawara, Takanori; Iwamoto, Yosuke; Takeshita, Hayato*; Maekawa, Fujio

JAEA-Research 2021-018, 41 Pages, 2022/03

JAEA-Research-2021-018.pdf:2.93MB

Neutronic analysis of beam window of the Accelerator-Driven System (ADS) proposed by Japan Atomic Energy Agency (JAEA) has been conducted using PHITS and DCHAIN-PHITS codes. We investigate gas production of hydrogen and helium isotopes in the beam window, displacement per atom of beam window material, and heat generation in the beam window. In addition, distributions of produced nuclides, heat density, and activity are derived. It was found that at the maximum 12500 appm H production, 1800 appm He production, and damage of 62.1 DPA occurred in the beam window by the ADS operation. On the other hand, the maximum heat generation in the beam window was 374 W/cm$$^3$$. In the analysis of LBE, $$^{206}$$Bi and $$^{210}$$Po were found to be the dominant nuclides in decay heat and radioactivity. Furthermore, the heat generation in the LBE by the proton beam was maximum around 5 cm downstream of the beam window, which was 945 W/cm$$^3$$.

JAEA Reports

Rod displacement measurements by X-ray CT and its impact on thermal-hydraulics in tight-lattice rod bundle (Joint research)

Mitsutake, Toru*; Katsuyama, Kozo*; Misawa, Takeharu; Nagamine, Tsuyoshi*; Kureta, Masatoshi*; Matsumoto, Shinichiro*; Akimoto, Hajime

JAERI-Tech 2005-034, 55 Pages, 2005/06

JAERI-Tech-2005-034.pdf:7.76MB

In tight-lattice bundles with about 1mm gap between rods, a rod displacement might affect thermal-hydraulic characteristics. The inside-structure observation of the simulated seven-rod bundle of RMWR was made with the high-energy X-ray CT of JNC. The CT view assured that the rod position was almost the same as expected by design. In the heat transfer experiments, all thermocouples on the center rod showed almost simultaneous BT-induced temperature increase and on the same axial heights showed quite similar time-variation behaviors in the vapor cooling heat transfer regime. It showed that the effect of the geometrical asymmetry was small on the BT characteristics. The calculated critical power by subchannel analysis with the input of the CT measured rod position was smaller by about 5% than that with the designed rod position. It concluded that the error in the calculated critical power was attributable not to the asymmetry in the rod position, but to the models in the subchannel analysis code.

Journal Articles

Rod displacement effect on thermal-hydraulic behaviour in tight-lattice bundle based on X-ray CT measurement

Mitsutake, Toru*; Akimoto, Hajime; Misawa, Takeharu; Kureta, Masatoshi*; Katsuyama, Kozo*; Nagamine, Tsuyoshi*; Matsumoto, Shinichiro*

Proceedings of 4th World Congress on Industrial Process Tomography, Vol.1, p.348 - 353, 2005/00

An inside-structure observation of a tight-lattice 7-rod bundle was made, using the high-energy X-ray computer tomography(CT) apparatus. The two-dimensional configurations of all rods were obtained at seventy-six axial height positions over the whole length of the bundle. The measured results of the rod positions showed small rod position displacements, about 0.5 millimeters at maximum, from the lattice positions. Based on these measured rod position displacement results, the flow area, equivalent hydraulic diameter, rod-rod clearance, and rod-shroud clearance were calculated. The effect of rod position displacement on critical power was estimated by a sub-channel analysis. The result showed that the rod position displacement effect has only a small effect on critical power calculations. The calculated critical power still overestimated the measured value.

JAEA Reports

FREC-4A : A Computer Program to Predict Fuel Rod Performance under Normal Reactor Operation

Harayama, Yasuo;

JAERI-M 9683, 140 Pages, 1981/10

JAERI-M-9683.pdf:3.19MB

no abstracts in English

Journal Articles

Atomic Displacements by Irradiation in Graphite

Nihon Genshiryoku Gakkai-Shi, 16(5), p.231 - 240, 1974/05

no abstracts in English

6 (Records 1-6 displayed on this page)
  • 1