Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
関川 卓也; 高田 和樹*; 甲斐 健師; 大野 義章*
Journal of Applied Physics, 137(20), p.203901_1 - 203901_10, 2025/05
被引用回数:0不揮発性磁気メモリは情報を保持するために電力が不要な次世代の磁気メモリとして注目されている。鉄と酸化マグネシウムの界面はその候補材料の一つである。近年の実験により、鉄と酸化マグネシウムの界面に単原子層フッ化リチウムを挿入すると磁気メモリの特性の指標である垂直磁気異方性が二倍に増加することが報告された。本研究では、鉄-酸化マグネシウムの界面と鉄-フッ化リチウム-酸化マグネシウムの界面の磁気モーメントを第一原理電子状態計算ソフトウェアOpenMXを用いて計算した。その結果から我々は、フッ化リチウムをその界面に挿入すると、界面付近の鉄原子の電子軌道が、フッ化リチウムの極小電子密度領域に向けて傾くように分布することで、磁気モーメントが挿入前の二倍になることを示す。本研究で得られた科学的知見は、高性能な不揮発性磁気メモリの候補材料を探索する新たな指針となる。
甲斐 健師; 樋川 智洋; 松谷 悠佑*; 平田 悠歩; 土田 秀次*; 横谷 明徳*
Journal of Chemical Physics, 162(15), p.154102_1 - 154102_11, 2025/04
被引用回数:0 パーセンタイル:0.00(Chemistry, Physical)放射線DNA損傷を推定するには、水の放射線分解の結果生じる低エネルギー電子の科学的知見が必要となる。しかしながら、水の放射線分解の解析は非常に複雑であるため本研究では、シンプルな水の光分解に関する低エネルギー電子の実験値と、水中の電極への光照射により発生した低エネルギー電子の実験値に注目した。本研究ではモンテカルロ法と分子動力学法を組み合わせた計算コードを利用し、これらの実験値を解析した。その結果、異なる実験条件であっても実験値をよく再現することを確認した。本計算コードは低エネルギー電子とDNAの相互作用を解析する強力なツールとなり、放射線DNA損傷の形成メカニズムの解明に適用されることが期待される。
松谷 悠佑; 吉井 勇治*; 楠本 多聞*; 小川 達彦; 大西 世紀*; 平田 悠歩; 佐藤 達彦; 甲斐 健師
Physical Chemistry Chemical Physics, 27(14), p.6887 - 6898, 2025/04
被引用回数:1 パーセンタイル:0.00(Chemistry, Physical)水の放射線分解により生成されるラジカルは、DNA損傷誘発、染色体異常、発がんなど、放射線による生物影響の評価において重要な役割を果たす。粒子および重イオン輸送コードシステム(PHITS)では、あらゆる荷電粒子について水中の原子相互作用を推定できる飛跡構造解析モードと、ラジカルをシミュレート可能な電子線専用の化学コード(PHITS-Chem)が先行研究にて開発された。本研究では、あらゆるイオンビームに適用可能なPHITS-Chemコードを開発すると同時に、化学種間の反応をより効率的に検出する空間分割法や化学種の4次元可視化機能を整備した。更新されたPHITS-Chemコードは、文献にて報告される陽子線、粒子線、炭素イオン線のG値と比較することにより検証され、PHITSオリジナル3次元描画ソフトPHIG-3Dによりラジカルの拡散動態を直感的に評価することに成功した。また、空間分割法の導入により、計算精度を維持しながら計算時間を大幅に短縮(約28倍高速化)することにも成功した。開発したPHITS-Chemコードは、粒子線治療においてラジカルにより誘発される生物効果の正確かつ直感的な理解に貢献することが期待される。
甲斐 健師; 樋川 智洋; 松谷 悠佑*; 平田 悠歩; 土田 秀次*; 伊東 佑真*; 横谷 明徳*
Communications Chemistry (Internet), 8, p.60_1 - 60_9, 2025/03
被引用回数:1 パーセンタイル:83.04(Chemistry, Multidisciplinary)放射線DNA損傷は、直接効果と間接効果から形成される。直接効果はDNAと放射線の相互作用であり、間接効果はDNAと放射線分解化学種との化学反応である。これまで、直接効果が関与すると、DNAの10塩基対以内(3.4nm程度)に複数の損傷が形成され、修復効率が低下し、生物影響が誘発されると考えられてきた。本研究では、間接効果のみにより誘発されるDNA損傷を定量的に評価した。その結果、生成される確率は1%未満であるが、DNA近傍の水に10数eVのエネルギーが付与されるだけで、複雑なDNA損傷が形成されることが分かった。つまり、放射線とDNAが直接相互作用することなく、DNAの極近傍の水にエネルギーを与えるだけで、後発の生物影響の可能性を排除できなくなる。本研究成果は、低線量放射線影響の理解に役立つ重要な知見の一つとなる。
小川 達彦; 平田 悠歩; 松谷 悠佑; 甲斐 健師; 佐藤 達彦; 岩元 洋介; 橋本 慎太郎; 古田 琢哉; 安部 晋一郎; 松田 規宏; et al.
EPJ Nuclear Sciences & Technologies (Internet), 10, p.13_1 - 13_8, 2024/11
放射線挙動解析コードPHITSは、モンテカルロ法に基づいてほぼ全ての放射線の挙動を解析することができる放射線挙動解析計算コードである。その最新版であるPHITS version 3.34の、飛跡構造解析機能に焦点を置いて説明する。飛跡構造解析とは、荷電粒子が物質中を運動する挙動を計算する手法の一つで、個々の原子反応を識別することにより原子スケールでの追跡を可能にするものである。従来の飛跡構造解析モデルは生体を模擬する水だけにしか適用できず、遺伝子への放射線損傷を解析するツールとして使われてきた飛跡構造解析であるが、PHITSにおいてはPHITS-ETS、PHITS-ETS for Si、PHITS-KURBUC、ETSART、ITSARという飛跡構造解析モデルが補い合うことにより、生体の放射線影響だけでなく、半導体や材料物質など任意物質に対する適用が可能になっている。実際にこれらのモデルを使って、放射線によるDNA損傷予測、半導体のキャリア生成エネルギー計算、DPAの空間配置予測など、新しい解析研究も発表されており、飛跡構造解析を基礎とするボトムアップ型の放射線影響研究の推進に重要な役割を果たすことが期待できる。
松谷 悠佑; 甲斐 健師; 佐藤 達彦
しょうとつ, 21(3), p.R008_1 - R008_8, 2024/11
粒子・重イオン輸送計算コードPHITSは、放射線の挙動をコンピュータで模擬するモンテカルロコードであり、2018年以降、生体の主成分である水中において個々の原子との反応を模擬できる飛跡構造解析モードが開発された。この開発により、DNAスケールにおける高空間分解能な放射線の飛跡構造解析が可能となった。一方、飛跡構造解析モードで計算される原子衝突の空間情報を活用し、様々なタイプのDNA損傷数を効率的かつ高精度に推定する解析コードの開発にも成功している。本稿では、最新版PHITSに搭載されている飛跡構造解析モード及びDNA損傷推定手法について概説し、PHITSの生命科学分野への応用例を紹介する。
甲斐 健師; 樋川 智洋; 松谷 悠佑*; 平田 悠歩; 手塚 智哉*; 土田 秀次*; 横谷 明徳*
Scientific Reports (Internet), 14, p.24722_1 - 24722_15, 2024/10
被引用回数:2 パーセンタイル:65.89(Multidisciplinary Sciences)放射線DNA損傷の直接・間接効果を推定するには、水の放射線分解に関する科学的知見が不可欠である。水の放射線分解により生じる二次電子は、この二つの効果に関与する。ここでは、第一原理計算コードを用いて、水への20-30eVのエネルギー付与の結果生じた二次電子のフェムト秒ダイナミクスを計算し、ナノサイズの極微小な空間領域に生成される放射線分解化学種の形成メカニズムを解析した。その結果から、水の放射線分解によって生成される化学種は、付与エネルギーが25eVを超えると数ナノメートルの極微小領域で高密度化し始めることを明らかにした。本研究成果は、細胞死のような生物学的影響を引き起こすと考えられているクラスターDNA損傷の形成について重要な科学的知見となる。
土田 秀次*; 手塚 智哉*; 甲斐 健師; 松谷 悠佑*; 間嶋 拓也*; 斉藤 学*
Journal of Chemical Physics, 161(10), p.104503_1 - 104503_8, 2024/09
被引用回数:0 パーセンタイル:0.00(Chemistry, Physical)高速イオンビームは、生体細胞内の水との相互作用によって生成される二次電子などの化学生成物によってDNAに損傷を与えるが、粒子線治療で用いられるブラッグピーク領域におけるこれらの化学生成物の生成過程は完全には理解されていない。この過程を調べるために、真空中の液体水ジェットにMeVエネルギーの炭素ビームを照射したときに生成される放射線分解物の収率を評価する実験を行った。さらに、放射線輸送モンテカルロコードを用いて、入射イオンと二次電子による水中の電離過程をシミュレーションした。その結果、水中でのイオン化の主な原因は二次電子であることがわかった。最後に、これらの素過程は、DNA損傷の形成機構を研究する放射線生物物理学や生化学の発展に寄与することを示す。
樋川 智洋; 甲斐 健師; 熊谷 友多; 横谷 明徳*
Journal of Chemical Physics, 160(21), p.214119_1 - 214119_9, 2024/06
被引用回数:3 パーセンタイル:75.15(Chemistry, Physical)イオン化によって引き起こされる不均質反応であるスパー反応は、溶液中の放射線分解あるいは光分解反応を左右する重要な反応だが、そのスパーの形成プロセスはまだ解明されていない。その理由の1つとして、イオン化によって生成した荷電種を取り囲む溶媒和分子の誘電応答の影響がまだ明らかになっていないことが挙げられる。誘電応答は誘電率の時間変化に対応しており、スパー形成プロセスにおける反応拡散系に影響を与える可能性がある。そこで本研究では、誘電応答を考慮しながらDebye-Smoluchowski方程式を解くことにより、反応拡散系に対する誘電応答の影響を調べた。荷電種間に働くクーロン力は、誘電応答とともに徐々に減少する。本計算から、誘電応答が完了する前に荷電種間で反応が起こる条件を見積もることが出来た。これまで低LET放射線誘起によるイオン化で生成する自由電子の初期G値が静的な誘電率に依存することは報告されているが、荷電種間が密になる高LET放射線や光誘起の化学反応を扱う場合は誘電応答を考慮することが重要であることが示唆された。
関川 卓也; 松谷 悠佑; Hwang, B.*; 石坂 優人*; 川井 弘之*; 大野 義章*; 佐藤 達彦; 甲斐 健師
Nuclear Instruments and Methods in Physics Research B, 548, p.165231_1 - 165231_6, 2024/03
被引用回数:1 パーセンタイル:52.60(Instruments & Instrumentation)放射線の人体に与える影響の主な原因として、遺伝情報を担うDNAの損傷が考えられている。しかし、DNAが放射線損傷によりどのような分子構造変化を示すかは十分理解されていない。DNAに放射線を照射すると様々な種類のDNA損傷が形成されることが報告されていることから、我々のグループではDNAが受ける損傷と放射線によって引き起こされる様々なパターンのイオン化の関係を調べてきた。これまでDNAを模した剛体モデルを用いた簡易な体系における解析を行っていたが、人体への影響を考える上で重要と考えられるDNAの分子構造変化を解析するためにはより詳細な計算を必要とする。そこで、本研究では分子構造に基づいて電子状態を議論できる第一原理計算ソフトウェアOpenMXを用いてDNAの分子構造変化を明らかにすることを試みた。具体的には、放射線により1電子及び2電子が電離した状況のDNAを仮定し、最安定構造、バンド分散、及び波動関数を計算した。発表では、粒子・重イオン輸送計算コードPHITSを用いて計算した放射線の線種及びエネルギーとDNAの分子構造変化の関係とともに議論する。また、放射線物理・固体物理の双方の観点から、放射線がもたらすDNAの基礎物性変化(DNA損傷の最初期過程に相当)について議論する。
平田 悠歩; 甲斐 健師; 小川 達彦; 松谷 悠佑; 佐藤 達彦
Nuclear Instruments and Methods in Physics Research B, 547, p.165183_1 - 165183_7, 2024/02
被引用回数:0 パーセンタイル:0.00(Instruments & Instrumentation)蛍光体の粒子線に対する発光効率は消光効果により低下することが知られている。蛍光体検出器を用いて正確な線量分布を得るためには、消光効果のメカニズムを理解することが不可欠である。本研究では、PHITSに実装された任意の物質に対する飛跡構造解析モードに基づいて蛍光体の発光強度を推定する新しいモデルを開発した。開発したモデルにより、BaFBr検出器の消光効果のシミュレーションが可能となり、その結果を対応する測定データと比較することにより検証した。このモデルは、様々なの蛍光体検出器の開発に貢献することが期待される。
松谷 悠佑; 吉井 勇治*; 楠本 多聞*; 赤松 憲*; 平田 悠歩; 佐藤 達彦; 甲斐 健師
Physics in Medicine & Biology, 69(3), p.035005_1 - 035005_12, 2024/02
被引用回数:4 パーセンタイル:88.58(Engineering, Biomedical)水の放射線分解における化学生成物の時間依存性は、電離放射線へ被ばくした後のDNA損傷応答を評価する際に重要な役割を果たす。粒子および重イオン輸送コードシステム(PHITS)は、放射線輸送のための汎用モンテカルロシミュレーションコードであり、物理過程であるイオン化や電子励起などの原子相互作用を計算することができる。しかし、水の放射線分解生成物をシミュレートするための化学コードはPHITSパッケージには存在しない。本研究では、電子線による水の放射線分解生成物(OHラジカル、e、H
、H
O
など)のG値を計算できるPHITS専用の化学シミュレーションコード(PHITS-Chemコード)を開発した。その結果、開発したPHITS-Chemコードは1
sまでのG値の測定値や他のシミュレーション値と一致することが確認できた。また、このコードは、OHラジカルスカベンジャー存在下での様々な化学生成物のシミュレーションや、DNA損傷誘発に対する直接的および間接的な影響の寄与を分析にも役立つ。このコードは原子力機構が主となり開発を進めるPHITSパッケージに内包され、8000名以上のユーザーに提供される予定である。
佐藤 達彦; 岩元 洋介; 橋本 慎太郎; 小川 達彦; 古田 琢哉; 安部 晋一郎; 甲斐 健師; 松谷 悠佑; 松田 規宏; 平田 悠歩; et al.
Journal of Nuclear Science and Technology, 61(1), p.127 - 135, 2024/01
被引用回数:144 パーセンタイル:99.97(Nuclear Science & Technology)放射線挙動解析コードPHITSは、モンテカルロ法に基づいてほぼ全ての放射線の挙動を解析することができる。その最新版であるPHITS version 3.31を開発し公開した。最新版では、高エネルギー核データに対する親和性や飛跡構造解析アルゴリズムなどが改良されている。また、PHIG-3DやRT-PHITSなど、パッケージに組み込まれた外部ソフトウェアも充実している。本論文では、2017年にリリースされたPHITS3.02以降に導入された新しい機能について説明する。
甲斐 健師; 樋川 智洋; 松谷 悠佑; 平田 悠歩; 手塚 智哉*; 土田 秀次*; 横谷 明徳*
RSC Advances (Internet), 13(46), p.32371 - 32380, 2023/11
被引用回数:4 パーセンタイル:41.44(Chemistry, Multidisciplinary)水の光分解・放射線分解の科学的知見は、生命科学などに幅広く利用されるが、水へのエネルギー付与の結果生じる水和電子の空間分布(スパー)の形成メカニズムは未だ良く分かっていない。スパー内に生じる水和電子、OHラジカル及びHO
の化学反応時間は、このスパー半径に強く依存する。我々は先行研究において、特定の付与エネルギー(12.4eV)におけるスパー形成メカニズムを第一原理計算により解明した。本研究では付与エネルギーが11-19eVにおけるスパー半径を第一原理計算した。本計算のスパー半径は3-10nmであり、付与エネルギーが8-12.4eVにおける実験予測値(~4nm)と一致し、付与エネルギーの増加に伴いその半径は徐々に拡大することがわかった。本研究で得られたスパー半径は新たな科学的知見であり、放射線DNA損傷の推定などに幅広く活用されることが期待できる。
平田 悠歩; 甲斐 健師; 小川 達彦; 松谷 悠佑*; 佐藤 達彦
Japanese Journal of Applied Physics, 62(10), p.106001_1 - 106001_6, 2023/10
被引用回数:4 パーセンタイル:47.87(Physics, Applied)半導体検出器の設計を最適化するには、半導体物質内において放射線がキャリア(励起電子)に変換されるまでの過程を理論的に解析する必要がある。本研究では、任意の半導体物質に対し、放射線により生じる二次電子の挙動を極低エネルギー(数eV)まで追跡し、励起電子が生成される過程を模擬できる機能(ETSART)を開発し、PHITSに実装した。具体的には、ETSARTを用いて計算した電子の飛程はICRU37で推奨されたデータ別の計算結果と一致することを確認した。さらに、半導体検出器の特性を表す重要な指標である、一つの励起電子の生成に必要な平均エネルギー(値)について検討し、これまで
値とバンドギャップエネルギーの関係は単純な直線モデルで考えられていたが、その関係は非線形関数であることを明らかにした。ETSARTは半導体検出器の最適化設計や応答解析に留まらず、新しい半導体物質の特性評価への応用も期待できる。
佐藤 達彦; 松谷 悠佑*; 小川 達彦; 甲斐 健師; 平田 悠歩; 津田 修一; Parisi, A.*
Physics in Medicine & Biology, 68(15), p.155005_1 - 155005_15, 2023/07
被引用回数:10 パーセンタイル:88.79(Engineering, Biomedical)PHITSには、マイクロドジメトリ機能と呼ばれるモンテカルロ法と解析関数を組み合わせて巨視的な空間内における微視的な領域の線量分布を計算する機能が備わっている。本論文では、そのマイクロドジメトリ機能を同じくPHITSに組み込まれた最新の飛跡構造解析モードを使って改良した結果について報告する。
甲斐 健師; 樋川 智洋; 鵜飼 正敏*; 藤井 健太郎*; 渡邊 立子*; 横谷 明徳*
Journal of Chemical Physics, 158(16), p.164103_1 - 164103_8, 2023/04
被引用回数:6 パーセンタイル:69.12(Chemistry, Physical)水の放射線分解・光分解に関する新たな科学的知見は、放射線化学・放射線生物学を含む様々な研究分野の劇的進歩に必要不可欠である。水に放射線を照射すると、その飛跡上に沿って、反応性の高い水和電子が無数に生成される。水和電子は、発生した電子と水分子の運動が動的に相関し、形成されることは知られているが、その形成に至るまでの、電子の非局在化、熱化、分極メカニズムは未だ解明していない。本研究で独自に開発したコードを利用した解析結果から、これらの過渡的現象は、水特有の水素結合ネットワークに由来する分子間振動モードと、水和を進行する水分子の回転モードの時間発展に支配されるように進行することが明らかとなった。本研究によるアプローチは、水に限らず、様々な溶媒に適用可能であり、そこから得られる科学的知見は、放射線生物影響、原子力化学、放射線計測など幅広い研究領域へ適用されることが期待できる。
甲斐 健師; 樋川 智洋; 松谷 悠佑*; 平田 悠歩; 手塚 智哉*; 土田 秀次*; 横谷 明徳*
RSC Advances (Internet), 13(11), p.7076 - 7086, 2023/03
被引用回数:10 パーセンタイル:73.00(Chemistry, Multidisciplinary)水の放射線分解に関する科学的知見は、生命科学などに幅広く利用されるが、水の分解生成物であるラジカルの生成メカニズムは未だ良く分かっていない。我々は、放射線物理の観点から、この生成メカニズムを解く計算コードの開発に挑戦し、第一原理計算により、水中の二次電子挙動は、水との衝突効果のみならず分極効果にも支配されることを明らかにした。さらに、二次電子の空間分布をもとに、電離と電子励起の割合を予測した結果、水和電子の初期収量の予測値は、放射線化学の観点から予測された初期収量を再現することに成功した。この結果は、開発した計算コードが放射線物理から放射線化学への合理的な時空間接続を実現できることを示している。本研究成果は、水の放射線分解の最初期過程を理解するための新たな科学的知見になることが期待できる。
谷内 淑恵*; 松谷 悠佑*; 吉井 勇治*; 福永 久典*; 伊達 広行*; 甲斐 健師
International Journal of Molecular Sciences (Internet), 24(2), p.1386_1 - 1386_14, 2023/01
被引用回数:5 パーセンタイル:45.63(Biochemistry & Molecular Biology)生きた細胞に放射線が照射され、DNAの数ナノメートル以内に複雑な損傷が形成されると、細胞死のような生物影響を誘発すると考えられている。一般的に、細胞に形成された複雑なDNA損傷は、蛍光体を利用すると、損傷部位の周辺が焦点のように発光するため、蛍光顕微鏡で実験的に検出することができる。しかしながらこの検出法で、DNA損傷の複雑さの度合いを解析するまでには至ってなかった。そこで本研究では、計測した焦点サイズに注目すると共に、飛跡構造解析コードを用いてDNA損傷の複雑さの度合いを評価した。その結果、DNA損傷がより複雑になると、焦点サイズも増大する ことがわかった。本研究成果は、放射線生物影響の初期要因を解明するための新たな解析手法になることが期待される。
小川 達彦; 平田 悠歩; 松谷 悠佑; 甲斐 健師
Isotope News, (784), p.13 - 16, 2022/12
入射荷電粒子が二次電子を生じる過程を原子サイズで明示的に計算する飛跡構造解析計算は、放射線生物影響,材料照射効果,放射線検出などの研究にとって重要な技術であり、近年主著者らの研究で新しい飛跡構造解析計算コードが開発された。従来の飛跡構造解析計算は標的物質の誘電関数を基に断面積を計算するため、誘電関数が良く測定されている水以外に、適用できるモデルは限られていた。本研究では誘電関数を使うことなく、二次電子エネルギー分布の系統式と阻止能を基に飛跡構造解析計算を行う手法により、誘電関数の測定値の有無にかかわらず、任意の物質で飛跡構造解析計算を実行することを可能とした。こうして開発したモデルで、陽子による水中の動径線量分布や二次電子生成量を計算したところ、従来のコードや実験値とよく一致した。このモデルは原子力機構の放射線輸送計算コードであるPHITS Ver3.25以降に実装され、任意物質に適用できる世界初の汎用飛跡構造解析コードとしてユーザーに提供されている。