検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 5 件中 1件目~5件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Groundwater $$Elusimicrobia$$ are metabolically diverse compared to gut microbiome $$Elusimicrobia$$ and some have a novel nitrogenase paralog

M$'e$heust, R.*; Castelle, C. J.*; Matheus Carnevali, P. B.*; Farag, I. F.*; He, C.*; Chen, L.-X.*; 天野 由記; Hug, L. A.*; Banfield, J. F.*

ISME Journal, 14(12), p.2907 - 2922, 2020/12

 被引用回数:39 パーセンタイル:94.42(Ecology)

We reconstructed 94 draft-quality, non-redundant genomes from diverse animal-associated and natural environments. Genomes group into 12 clades, 10 of which previously lacked reference genomes. Groundwater-associated $$Elusimicrobia$$ are predicted to be capable of heterotrophic or autotrophic lifestyles, reliant on oxygen or nitrate/nitrite-dependent respiration of fatty acids, or a variety of organic compounds and Rnf-dependent acetogenesis with hydrogen and carbon dioxide as the substrates. Genomes from two clades of groundwater-associated $$Elusimicrobia$$ often encode a new homologous group of nitrogenase-like proteins that co-occur with an extensive suite of radical SAM-based proteins. We identified similar genomic loci in genomes of bacteria from the Gracilibacteria and Myxococcus phyla and predict that the gene clusters reduce a tetrapyrrole, possibly to form a novel cofactor. The animal-associated $$Elusimicrobia$$ clades nest phylogenetically within two groundwater-associated clades. Thus, we propose an evolutionary trajectory in which some $$Elusimicrobia$$ adapted to animal-associated lifestyles from groundwater-associated species via genome reduction.

論文

Clades of huge phages from across Earth's ecosystems

Al-Shayeb, B.*; Sachdeva, R.*; Chen, L.-X.*; Ward, F.*; Munk, P.*; Devoto, A.*; Castelle, C. J.*; Olm, M. R.*; Bouma-Gregson, K.*; 天野 由記; et al.

Nature, 578(7795), p.425 - 431, 2020/02

 被引用回数:220 パーセンタイル:99.5(Multidisciplinary Sciences)

Phage typically have small genomes and depend on their bacterial hosts for replication. We generated metagenomic datasets from many diverse ecosystems and reconstructed hundreds of huge phage genomes, between 200 kbp and 716 kbp in length. Thirty four genomes were manually curated to completion, including the largest phage genomes yet reported. Expanded genetic repertoires include diverse and new CRISPR-Cas systems, tRNAs, tRNA synthetases, tRNA modification enzymes, initiation and elongation factors and ribosomal proteins. Phage CRISPR have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. Some phage repurpose bacterial systems for phage-defense to eliminate competing phage. We phylogenetically define seven major clades of huge phage from human and other animal microbiomes, oceans, lakes, sediments, soils and the built environment. We conclude that large gene inventories reflect a conserved biological strategy, observed across a broad bacterial host range and resulting in the distribution of huge phage across Earth's ecosystems.

論文

Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria

Matheus Carnevali, P. B.*; Schulz, F.*; Castelle, C. J.*; Kantor, R. S.*; Shih, P.*; Sharon, I.*; Santini, J.*; Olm, M. R.*; 天野 由記; Thomas, B. C.*; et al.

Nature Communications (Internet), 10, p.463_1 - 463_15, 2019/01

 被引用回数:35 パーセンタイル:86.04(Multidisciplinary Sciences)

The metabolic platform in which microbial aerobic respiration evolved is tightly linked to the origins of Cyanobacteria (Oxyphotobacteria). Melainabacteria and Sericytochromatia, close phylogenetic neighbores to Oxyphotobacteria comprise both fermentative and aerobic representatives, or clades that are capablee of both. Here, we predict the metabolisms of Margulisbacteria from two distinct environments and Saganbacteria, and compare them to genomes of organisms from the related lineages. Melainabacteria BJ4A obtained from Mizunami site are potentially able to use O$$_{2}$$ and other terminal electron acceptors. The type C heme-copper oxygen reductase found in Melainabacteria BJ4A may be adapted to low O$$_{2}$$ levels, as expected for microaerophilic or anoxic environments such as the subsurface. Notably, Melainabacteria BJ4A seems to have a branched electron transport chain, with one branch leading to a cytochrome d ubiquinol oxidoreductase and the other one leading to the type C heme-copper oxygen reductase. Both these enzymes have high affinity for O$$_{2}$$, thus are adapted to low O$$_{2}$$ levels. These contemporary lineages have representatives with fermentative H$$_{2}$$-based metabolism, lineages capable of aerobic or anaerobic respiration, and lineages with both. Our findings support the idea that the ancestor of these lineages was an anaerobe in which fermentation and H$$_{2}$$ metabolism were central metabolic features.

論文

A New view of the tree of life

Hug, L. A.*; Baker, B. J.*; Anantharaman, K.*; Brown, C. T.*; Probst, A. J.*; Castelle, C. J.*; Butterfield, C. N.*; Hernsdorf, A. W.*; 天野 由記; 伊勢 孝太郎; et al.

Nature Microbiology (Internet), 1(5), p.16048_1 - 16048_6, 2016/05

 被引用回数:1209 パーセンタイル:99.97(Microbiology)

生命の系統樹は生物学において最も重要な中心テーマの一つである。遺伝子調査によると、莫大な数のブランチの存在が示唆されているが、フルスケールに近い系統樹でさえわかりにくいのが現状である。本研究では、これまでに報告されてきた配列情報に加えて、新たに取得した未培養生物のゲノム情報を用いて、バクテリア,アーキア,真核生物を含む系統樹を更新した。系統樹の描写は、全体的な概容とそれぞれの主要な系統における多様性のスナップショットの両方について行った。その結果、バクテリアの多様化の優勢性が示され、培養されていない生物種の重要性とともに主要な放射構造においてそれらの生物種の重要な進化が集中している現象が強調された。

口頭

Sulfur and hydrogen metabolism linked to CO$$_{2}$$ fixation by abundant Nitrospirae in the deep subsurface

天野 由記; Anantharaman, K.*; Tomas, B. C.*; Olm, M.*; Burstein, D.*; Castelle, C. J.*; 別部 光里*; 宮川 和也; 岩月 輝希; 鈴木 庸平*; et al.

no journal, , 

The bacterial phylum Nitrospirae is phylogenetically diverse. There are relatively few isolated representatives available for laboratory study and the physiology, functions and distributions of these bacteria across environments remain largely unknown. To understand the ecological role of Nitrospirae in the deep subsurface, we analyzed metagenomically-derived near complete genomes from groundwaters associated with granite and sedimentary rock where Nitrospirae are very abundant. The bacteria are autotrophs that fix CO$$_{2}$$ via the Wood-Ljungdahl pathway and reductive TCA cycles. The genomes encode versatile energy-generating pathways that involve sulfate reduction, hydrogen oxidation and nitrite reduction. Phylogenetic analyses indicate that the organisms are most similar to the isolated magnetotactic bacterium, Candidatus Magnetobacterium bavaricum, with only 89-91% 16S rRNA gene sequence identity. These Nitrospirae bacteria appear to play critical ecosystem roles as primary producers and they are likely central to sulfur cycling in the deep subsurface.

5 件中 1件目~5件目を表示
  • 1