Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Orlandi, R.; 牧井 宏之; 西尾 勝久; 廣瀬 健太郎; 浅井 雅人; 塚田 和明; 佐藤 哲也; 伊藤 由太; 洲嵜 ふみ; 永目 諭一郎*; et al.
Physical Review C, 106(6), p.064301_1 - 064301_11, 2022/12
被引用回数:0 パーセンタイル:0.02(Physics, Nuclear)The nuclear structure of Cf produced by the
O+
Cf multinucleon transfer reaction was investigated using
-ray spectroscopy. Analysis of the
-ray spectrum of
Cf revealed the presence of multiple long-lived (isomeric) excited states at low excitation energies. The energies and half-lives of the isomers contain information on the proton and neutron orbits in the heavy-element region and the deformation of atomic nuclei, and are important data to predict the properties of nuclei in the "island of stability".
Brumm, S.*; Gabrielli, F.*; Sanchez-Espinoza, V.*; Groudev, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; Bocanegra, R.*; Herranz, L. E.*; Berda, M.*; et al.
Proceedings of 10th European Review Meeting on Severe Accident Research (ERMSAR 2022) (Internet), 13 Pages, 2022/05
The current HORIZON-2020 project on "Management and Uncertainties of Severe Accidents (MUSA)" aims at applying Uncertainty Quantification (UQ) in the modeling of Severe Accidents (SA), particularly in predicting the radiological source term of mitigated and unmitigated accident scenarios. Within its application part, the project is devoted to the uncertainty quantification of different severe accident codes when predicting the radiological source term of selected severe accident sequences of different nuclear power plant designs, e.g. PWR, VVER, and BWR. Key steps for this investigation are, (a) the selection of severe accident sequences for each reactor design, (b) the development of a reference input model for the specific design and SA-code, (c) the selection of a list of uncertain model parameters to be investigated, (d) the choice of an UQ-tool e.g. DAKOTA, SUSA, URANIE, etc., (e) the definition of the figures of merit for the UA-analysis, (f) the performance of the simulations with the SA-codes, and, (g) the statistical evaluation of the results using the capabilities, i.e. methods and tools offered by the UQ-tools. This paper describes the project status of the UQ of different SA codes for the selected SA sequences, and the technical challenges and lessons learnt from the preparatory and exploratory investigations performed.
Yan, S. Q.*; Li, X. Y.*; 西尾 勝久; Lugaro, M.*; Li, Z. H.*; 牧井 宏之; Pignatari, M.*; Wang, Y. B.*; Orlandi, R.; 廣瀬 健太郎; et al.
Astrophysical Journal, 919(2), p.84_1 - 84_7, 2021/10
被引用回数:1 パーセンタイル:17.16(Astronomy & Astrophysics)The long-lived Fe (with a half-life of 2.62 Myr) is a crucial diagnostic of active nucleosynthesis in the Milky Way galaxy and in supernovae near the solar system. The neutron-capture reaction
Fe(n,
)
Fe on
Fe (half-life=44.5 days) is the key reaction for the production of
Fe in massive stars. This reaction cross section has been previously constrained by the Coulomb dissociation experiment, which offered partial constraint on the E1
-ray strength function but a negligible constraint on the M1 and E2 components. In this work, for the first time, we use the surrogate ratio method to experimentally determine the
Fe(n,
)
Fe cross sections in which all the components are included. We derived a Maxwellian-averaged cross section of 27.5
3.5 mb at
= 30 keV and 13.4
1.7 mb at
= 90 keV, roughly 10%-20% higher than previous estimates. We analyzed the impact of our new reaction rates in nucleosynthesis models of massive stars and found that uncertainties in the production of
Fe from the
Fe(n,
)
Fe rate are at most 25
. We conclude that stellar physics uncertainties now play a major role in the accurate evaluation of the stellar production of
Fe.
Schaffer, M. J.*; Snipes, J. A.*; Gohil, P.*; de Vries, P.*; Evans, T. E.*; Fenstermacher, M. E.*; Gao, X.*; Garofalo, A. M.*; Gates, D. A.*; Greenfield, C. M.*; et al.
Nuclear Fusion, 51(10), p.103028_1 - 103028_11, 2011/10
被引用回数:33 パーセンタイル:80.72(Physics, Fluids & Plasmas)ITERのテストブランケットモジュールが作ると思われる誤差磁場の影響を調べる実験をDIII-Dにおいて実施した。プラズマ回転とモードロッキング,閉じ込め,LH遷移,ELM安定化,ELMとHモードペデスタル特性,高エネルギー粒子損失等を調べた。実験では、ITERの1つの赤道面ポートを模擬する3つ組のコイルを1セット使用した。その結果、ITERのTBMが作る誤差磁場のためにITERの運転が妨げられるような結果は得られなかった。一番大きな変化はプラズマ回転を減速させるものであり、非共鳴ブレーキング効果によってプラズマ全体の回転が50%程度減少した。密度や閉じ込めへの影響は、回転の影響の1/3程度である。これらの影響は、プラズマ圧力の高いプラズマや回転の低いプラズマで顕著である。それ以外の影響は軽微であった。