検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Long decay length of magnon-polarons in BiFeO$$_{3}$$/La$$_{0.67}$$Sr$$_{0.33}$$MnO$$_{3}$$ heterostructures

Zhang, J.*; Chen, M.*; Chen, J.*; 山本 慧; Wang, H.*; Hamdi, M.*; Sun, Y.*; Wagner, K.*; He, W.*; Zhang, Y.*; et al.

Nature Communications (Internet), 12, p.7258_1 - 7258_8, 2021/12

 被引用回数:10 パーセンタイル:76.55(Multidisciplinary Sciences)

Magnons can transfer information in metals and insulators without Joule heating, and therefore are promising for low-power computation. The on-chip magnonics however suffers from high losses due to limited magnon decay length. In metallic thin films, it is typically on the tens of micrometre length scale. Here, we demonstrate an ultra-long magnon decay length of up to one millimetre in multiferroic/ferromagnetic BiFeO$$_{3}$$(BFO)/La$$_{0.67}$$Sr$$_{0.33}$$MnO$$_{3}$$ (LSMO) heterostructures at room temperature. This decay length is attributed to a magnon-phonon hybridization and is more than two orders of magnitude longer than that of bare metallic LSMO. The long-distance modes have high group velocities of 2.5 km$$^{-1}$$ as detected by time-resolved Brillouin light scattering. Numerical simulations suggest that magnetoelastic coupling via the BFO/LSMO interface hybridizes phonons in BFO with magnons in LSMO. Our results provide a solution to the long-standing issue on magnon decay lengths in metallic magnets and advance the bourgeoning field of hybrid magnonics.

論文

Nonreciprocal surface acoustic wave propagation via magneto-rotation coupling

Xu, M.*; 山本 慧; Puebla, J.*; Baumgaertl, K.*; Rana, B.*; 三浦 勝哉*; 高橋 宏昌*; Grundler, D.*; 前川 禎通*; 大谷 義近*

Science Advances (Internet), 6(32), p.eabb1724_1 - eabb1724_4, 2020/08

 被引用回数:62 パーセンタイル:96.95(Multidisciplinary Sciences)

One of the most fundamental forms of magnon-phonon-interaction is an intrinsic property of magnetic materials, the "magnetoelastic coupling." This particular form of interaction has been the basis for describing magnetic materials and their strain related applications, where strain induces changes of internal magnetic fields. Different from the magnetoelastic coupling, more than 40 years ago, it was proposed that surface acoustic waves may induce surface magnons via rotational motion of the lattice in anisotropic magnets. However, a signature of this magnon-phonon coupling mechanism, termed magneto-rotation coupling, has been elusive. Here, we report the first observation and theoretical framework of the magneto-rotation coupling in a perpendicular anisotropic ultra-thin lim Ta/CoFeB/MgO, which consequently induces nonreciprocal acoustic wave attenuation with an unprecedented ratio up to 100% rectification at a theoretically predicted optimized condition. Our work not only experimentally demonstrates a fundamentally new path for investigating magnon-phonon coupling, but also justifies the feasibility of the magneto-rotation coupling based application.

2 件中 1件目~2件目を表示
  • 1