Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Saha, P. K.; 菖蒲田 義博; 發知 英明; 原田 寛之; 林 直樹; 金正 倫計; 田村 文彦; 谷 教夫; 山本 昌亘; 渡辺 泰広; et al.
Physical Review Accelerators and Beams (Internet), 21(2), p.024203_1 - 024203_20, 2018/02
被引用回数:11 パーセンタイル:62.44(Physics, Nuclear)The transverse impedance of the extraction kicker magnets in the 3-GeV RCS of J-PARC is a strong beam instability source and it is one of the significant issue to realize 1 MW beam power as practical measures are yet to be implemented to reduce the impedance. In the present research realistic simulation by updating the simulation code to cope with all time dependent machine parameters were performed in order to study the detail of beam instability nature and to determine realistic parameters for beam instability mitigation. The simulation results were well reproduced by the measurements, and as a consequence an acceleration to 1 MW beam power has also been successfully demonstrated. To further increase of the RCS beam power up to 1.5 MW, beam instability issues and corresponding measures have also been studied.
Saha, P. K.; 菖蒲田 義博; 發知 英明; 原田 寛之; 山本 昌亘; Holmes, J. A.*; 加藤 新一*
Proceedings of 4th International Particle Accelerator Conference (IPAC '13) (Internet), p.521 - 523, 2014/07
ORBIT code has been developed to give new realistic enhancements in order to use for beam simulation in a Rapid Cycling Synchrotrons like J-PARC RCS. It is very important to have two independent simulation codes apply to a same machine. Many detail comparison can be done. It would be very useful for 1 MW beam simulations as well as optimization in the RCS in addition to the SIMPSONS code.