Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Chikhray, Y.*; Askerbekov, S.*; Kenzhin, Y.*; Gordienko, Y.*; 石塚 悦男
Fusion Science and Technology, 76(4), p.494 - 502, 2020/05
被引用回数:1 パーセンタイル:10.11(Nuclear Science & Technology)The investigation of the mechanisms and dynamics of hydrogen isotopic interaction with solid surfaces (metals, ceramics, graphites, eutectics) in temperature and pressure ranges is important not only for the correct prediction of each isotope's evolution but also for substantiation of the safe operation of hydrogen-facing structural materials. The interaction of the hydrogen isotopes mix with the surface of solid metal or liquid eutectics is a complicated multistage H-D-T-O-solid interacting process depending on material property, environment, and the solid's surface parameters. To better understand the mechanisms of hydrogen isotopes interchange at a solid surface and to identify the limiting stages in the sorption-desorption processes, a reactor experiment of neutron irradiation was conducted with lithium-containing eutectics as tritium-generating media under the external flow of hydrogen. This work presents the model and results of its application to fitting the experimental results of tritium yield from the lithium-lead eutectics PbLiunder thermal neutrons irradiation at the IVG.1M reactor in Kazakhstan. The elaborated model and the approach used were also applied to the simulation of high temperature gas cooled reactor graphite corrosion in water vapors.
Shaimerdenov, A.*; Gizatulin, S.*; Kenzhin, Y.*; Dyussambayev, D.*; 植田 祥平; 相原 純; 柴田 大受
Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 6 Pages, 2018/10
高温ガス炉燃料の100GWd/tへの高燃焼度化開発のため、原子力機構の協力の下、国際科学技術センター(ISTC)のプロジェクトにおいて、カザフスタン核物理研究所(INP)が高温ガス炉燃料試料の照射試験並びに照射後試験を実施している。新設計の四層三重(TRISO)被覆燃料粒子を円筒状の黒鉛マトリックス燃料コンパクトに成形した照射燃料試料は、日本において製作された。ヘリウムガススウィープ照射キャプセルの設計製作はINPが実施し、WWR-K照射炉を用いての照射試験が2015年4月から実施された。次の段階として、照射済み燃料試料の照射後試験が2017年2月にISTCの新規プロジェクトとして開始された。照射済み燃料試料の非破壊試験および破壊試験に係る様々な照射後試験技術がINPによって開発された。本報では、高燃焼度化TRISO燃料の照射後試験のために開発した技術並びに試験結果について中間報告する。
谷本 政隆; 田口 剛俊; 岡田 学; 塙 善雄; 土谷 邦彦; 池田 昌之*; 藤本 洋一*; Kotov, V.*; Kenzhin, E.*; Kenzhin, Y.*
JAEA-Technology 2011-001, 39 Pages, 2011/03
中性子照射されたベリリウムを処理して再利用することは、資源の有効利用,核不拡散体制の強化などのために行うべき課題である。そこで、現在実施されているJMTRの改修・再稼働の一環として、処理処分方法の検討されており、ベリリウムリサイクルに関する実証試験を国際科学技術センター(ISTC)のプロジェクトがカザフスタン共和国の国立原子力センター原子力研究所(NNC-IAE)と行っている。本報告書は、国際協力ISTCプロジェクトに基づき、研究用照射済ベリリウム試料を原子力機構からカザフスタン共和国のNNC-IAEに外国輸送するための輸送方法の検討を行い、実際に行った照射済ベリリウム試料の輸送結果をまとめたものである。
中道 勝; Kulsartov, T. V.*; 林 君夫; Afanasyev, S. E.*; Shestakov, V. P.*; Chikhray, Y. V.*; Kenzhin, E. A.*; Kolbaenkov, A. N.*
Fusion Engineering and Design, 82(15-24), p.2246 - 2251, 2007/10
被引用回数:25 パーセンタイル:83.02(Nuclear Science & Technology)本件は、ISTC(国際科学技術センター)による国際協力として行った研究の成果である。核融合原型炉のトリチウム回収・処理システムの妥当な設計を実現するためには、トリチウムの透過低減機能を有する、ブランケット構造材料への皮膜の開発が必要である。原子力機構では、CrPOを含むCrO-SiOのセラミック材料を用いて、高性能の皮膜を開発した。以前に行った600Cにおける炉外重水素透過実験においては、フェライト鋼(F82H)製の円筒状拡散セルの内面への皮膜について、約300という大きな透過低減係数(PRF)が得られた。本研究では、カザフスタンの試験炉IGV-1Mを用いて、同皮膜がある場合とない場合のF82鋼について、トリチウム透過に関する炉内実験を行った。液体のリチウム鉛(PbLi)をトリチウム源として用いた。照射時間は約4時間であり、高速中性子照射量は約210n/m(E1.1MeV)であった。皮膜がある場合とない場合のF82鋼製の拡散セルについて、トリチウムの透過曲線から透過低減係数を求めたところ、600C及び500Cについて、それぞれ292及び30であった。これらの値は、上記の炉外実験において、600C及び500Cについて得られた値である307及び45に近い値であった。
Kulsartov, T. V.*; 林 君夫; 中道 勝*; Afanasyev, S. E.*; Shestakov, V. P.*; Chikhray, Y. V.*; Kenzhin, E. A.*; Kolbaenkov, A. N.*
Fusion Engineering and Design, 81(1-7), p.701 - 705, 2006/02
被引用回数:44 パーセンタイル:92.72(Nuclear Science & Technology)核融合炉構造材料へのセラミック被覆は、トリチウム透過防止膜として使用されることが考えられている。本研究では、リン酸クロム(CrPO)を含む酸化クロム-二酸化ケイ素のセラミック皮膜がある場合とない場合におけるF82H鋼について、水素及び重水素透過実験を行った。まず第1段階として、300600Cの1001000Paの水素及び重水素雰囲気において、皮膜のないF82H鋼中の透過実験を行った。得られた拡散係数,透過定数及び溶解度は、以前に公刊されている値と良い一致を示した。第2段階としては、皮膜を施したF82H鋼中について、400600C, 10001500Paの重水素雰囲気において、上と同様な透過実験を行い、皮膜の透過低減係数(PRF)を算出した。600Cにおける透過低減係数は約400であった。この値は、同じ皮膜を316ステンレス鋼に施した場合の透過低減係数(約1000)に匹敵する値である。本発表は、国際科学技術センター(ISTC)によるパートナープロジェクト(K-1047p)として実施した研究の成果の一部を発表するものである。
中塚 亨; Levin, A. G.*; 植田 祥平; Gizatulin, S.*; 橘 幸男; Kolodeshnikov, A.*; 坂場 成昭; Chakrov, P.*; 國富 一彦; Vassiliev, Y. S.*; et al.
no journal, ,
電気出力300MWeに満たない小型高温ガス炉は、都市部や郊外のみならずカザフスタンのような新興国における配電インフラが未発達な地域へのエネルギー供給が可能な原子炉である。2007年に日本原子力研究開発機構(JAEA)とカザフスタン国立原子力センター(NNC)は、カザフスタンにおける高温ガス炉導入の早期実現に向け、原子力に関する研究開発協力を開始するとともに、高温工学試験研究炉(HTTR)技術に基づくカザフスタン高温ガス炉(KHTR)計画への支援を開始した。2010年に、JAEAは国内重工メーカー等と構成する日本チームと共同で、NNCのKHTRの概念検討の準備を支援するため、熱出力50MW、原子炉出口冷却材温度750Cの蒸気タービン発電KHTRシステムの概念設計を開始した。