検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 3 件中 1件目~3件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

発表言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Enhancement of fatigue resistance by overload-induced deformation twinning in a CoCrFeMnNi high-entropy alloy

Lam, T.-N.*; Lee, S. Y.*; Tsou, N.-T.*; Chou, H.-S.*; Lai, B.-H.*; Chang, Y.-J.*; Feng, R.*; 川崎 卓郎; Harjo, S.; Liaw, P. K.*; et al.

Acta Materialia, 201, p.412 - 424, 2020/12

 被引用回数:43 パーセンタイル:90.66(Materials Science, Multidisciplinary)

We examined fatigue-crack-growth behaviors of CoCrFeMnNi high-entropy alloys (HEAs) under as-fatigued and tensile-overloaded conditions using neutron-diffraction measurements coupled with diffraction peak-profile analyses. We applied both high-resolution transmission electron microscopy (HRTEM) and neutron-diffraction strain mapping for the complementary microstructure examinations. Immediately after a single tensile overload, the crack-growth-retardation period was obtained by enhancing the fatigue resistance, as compared to the as-fatigued condition. The combined mechanisms of the overload-induced larger plastic deformation, the enlarged compressive residual stresses and plastic-zone size, the crack-tip blunting ahead of the crack tip, and deformation twinning governed the pronounced macroscopic crack-growth-retardation behavior following the tensile overload.

論文

Element effects of Mn and Ge on the tuning of mechanical properties of high-entropy alloys

Lam, T.-N.*; Tsai, C.-W.*; Chen, B.-K.*; Lai, B.-H.*; Liu, H.-C*; 川崎 卓郎; Harjo, S.; Lin, B.-H.*; Huang, E.-W.*

Metallurgical and Materials Transactions A, 51(10), p.5023 - 5028, 2020/10

 被引用回数:14 パーセンタイル:56.94(Materials Science, Multidisciplinary)

Substitution of Ge for Mn increases the elastic moduli of different $${h k l}$$ orientations of the CoCrFeMnNi-based high-entropy alloy. Our findings indicate that tuning minor element compositions may result in improved strength-ductility combination. The underlying deformation mechanisms of CoCrFeNiGe$$_{0.3}$$ were examined by ${it in situ}$ neutron diffraction and analysis of the associated diffraction profiles during tensile deformation. The strain-hardening response of CoCrFeNiGe$$_{0.3}$$ exhibited a dominant mechanism of mechanical twinning at moderate and large strains at room temperature. The evolution of the bulk work hardening rate was consistent with the convolutional multiple whole profile fitting results, which exhibited a continuous increase in twin formation probability.

論文

Comparing cyclic tension-compression effects on CoCrFeMnNi high-entropy alloy and Ni-based superalloy

Lam, T.-N.*; Chou, Y.-S.*; Chang, Y.-J.*; Sui, T.-R.*; Yeh, A.-C.*; Harjo, S.; Lee, S. Y.*; Jain, J.*; Lai, B.-H.*; Huang, E.-W.*

Crystals (Internet), 9(8), p.420_1 - 420_8, 2019/08

AA2019-0503.pdf:1.06MB

 被引用回数:9 パーセンタイル:62.00(Crystallography)

An equal-molar CoCrFeMnNi, face-centered-cubic (fcc) high-entropy alloy (HEA) and a nickel-based superalloy are studied using in situ neutron diffraction experiments. With continuous measurements, the evolution of diffraction peaks is collected for microscopic lattice strain analyses. Cyclic hardening and softening are found in both metallic systems. However, as obtained from the diffraction-peak-width evolution, the underneath deformation mechanisms are quite different. The CoCrFeMnNi HEA exhibits distinct lattice strain and microstructure responses under tension-compression cyclic loadings.

3 件中 1件目~3件目を表示
  • 1