検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 1 件中 1件目~1件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Divalent EuRh$$_2$$Si$$_2$$ as a reference for the Luttinger theorem and antiferromagnetism in trivalent heavy-fermion YbRh$$_2$$Si$$_2$$

G$"u$ttler, M.*; Generalov, A.*; 藤森 伸一; Kummer, K.*; Chikina, A.*; Seiro, S.*; Danzenb$"a$cher, S.*; Koroteev, Yu. M.*; Chulkov, E. V.*; Radovic, M.*; et al.

Nature Communications (Internet), 10, p.796_1 - 796_7, 2019/02

 被引用回数:9 パーセンタイル:59.99(Multidisciplinary Sciences)

Application of the Luttinger Theorem (LT) to the canonical heavy-fermion Kondo Lattice (KL) material YbRh$$_2$$Si$$_2$$ suggests that its large 4f-derived Fermi surface (FS) in the paramagnetic (PM) regime should be similar in shape and volume to that of the divalent local moment anti-ferromagnet (AFM) EuRh$$_2$$Si$$_2$$ in its PM regime. This leads to the tempting opportunity to explore a new experimental realization of the LT in general and how the large FS may change upon the AFM transition below 70 mK in YbRh$$_2$$Si$$_2$$ in particular. A detailed knowledge of the FS reconstruction might be essential to disclose the properties of this phase, which is a precursor of quantum criticality and superconductivity. Using angle-resolved photoemission spectroscopy (ARPES), we observe a large FS for PM EuRh$$_2$$Si$$_2$$ essentially the same as the one seen in YbRh$$_2$$Si$$_2$$ in the KL state at a temperature of 1 K. Across the EuRh$$_2$$Si$$_2$$ AFM transition we found an extensive fragmentation of the FS due to Brillouin zone folding, intersection and resulting hybridization of the Doughnut and Jungle gym Fermi-surface sheets. Our results on EuRh$$_2$$Si$$_2$$ indicate that the formation of the AFM state in YbRh$$_2$$Si$$_2$$ is very likely also connected with large changes in the FS, which have to be taken into account in the controversial analysis and discussion of anomalies observed at the quantum critical point in this system.

1 件中 1件目~1件目を表示
  • 1