検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 96 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

発表言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Residual stress measurement and lifetime evaluation of railway axles by neutron scattering technology

Hu, F.-F.*; Qin, T.-Y.*; Ao, N.*; 徐 平光; Su, Y. H.; Parker, J. D.*; 篠原 武尚; 菖蒲 敬久; Kang, G.-Z.*; Ren, M.-M.; et al.

Journal of Traffic and Transportation Engineering (English Edition), 25(2), p.75 - 93, 2025/04

To accurately predict the remaining lifetime of surface-strengthened railway axles, a damage tolerance method considering three-dimensional (3D) residual stresses was proposed. By taking the induction-hardened carbon steel S38C axle as an example, two-dimensional (2D) distribution characterization of residual strain and 3D residual stress measurement were performed through comprehensive application of the neutron Bragg-edge transmission imaging and angle-dispersive neutron diffraction experiments. A numerical method was employed to implant the 3D residual stress into the axle model, and the remaining lifetime of the full-scale axle was studied by coupling the measured load spectrum, press-fit loads, and residual stresses. Experimental results shows that, both axial and hoop directions present a compressive residual strain gradient layer of about 3 mm, with a maximum compressive residual strain of up to -4500 $$mu$$$$varepsilon$$ in the surface layer, yet a maximum tensile strain of up to 1000 $$mu$$$$varepsilon$$ in the core. The maximum axial and hoop compressive stresses of the axle are about -500 MPa and -303 MPa respectively, while radial stresses overall fluctuate in the zero mean stress range. At depths beyond 4.5 mm from the surface layer, all three components are tensile stresses. The axle surface layer is subjected to compressive residual stresses, and crack propagation does not occur if the crack depth is less than 4.5 mm. Nevertheless, cracks propagate accelerates when the crack depth is greater than 4.5 mm. Different crack propagation depth thresholds lead to a larger calculated remaining lifetime for the residual stress-free condition than for the case where 3D residual stresses are taken into account. However, the axle remaining service mileage of the axle of 227000 Km under the most conservative conditions exceeds 3.5 non-destructive inspection (NDI) cycles, with a large safety margin. The experimental results can provide a scientific reference for the development and optimization of NDI cycles for surface-strengthened railway axles.

論文

Unusual low-temperature ductility increase mediated by dislocations alone

Naeem, M.*; Ma, Y.*; Tian, J.*; Kong, H.*; Romero-Resendiz, L.*; Fan, Z.*; Jiang, F.*; Gong, W.; Harjo, S.; Wu, Z.*; et al.

Materials Science & Engineering A, 924, p.147819_1 - 147819_10, 2025/02

 被引用回数:0 パーセンタイル:0.00(Nanoscience & Nanotechnology)

Face-centered cubic (fcc) medium-/high-entropy alloys (M/HEAs) typically enhance strength and ductility at cryogenic temperatures via stacking faults, twinning, or martensitic transformation. However, in-situ neutron diffraction on VCoNi MEA at 15 K reveals that strain hardening is driven solely by rapid dislocation accumulation, without these mechanisms. This results in increased yield strength, strain hardening, and fracture strain. The behavior, explained by the Orowan equation, challenges conventional views on cryogenic strengthening in fcc M/HEAs and highlights the role of dislocation-mediated plasticity at low temperatures.

論文

Anomalous dislocation response to deformation strain in CrFeCoNiPd high-entropy alloys with nanoscale chemical fluctuations

Ying, H.*; Yang, X.*; He, H.*; Yan, A.*; An, K.*; Ke, Y.*; Wu, Z.*; Tang, S.*; Zhang, Z.*; Dong, H.*; et al.

Scripta Materialia, 250, p.116181_1 - 116181_7, 2024/09

 被引用回数:1 パーセンタイル:41.92(Nanoscience & Nanotechnology)

Nanoscale chemical fluctuations and their effect on the deformation behavior of CrFeCoNi-based high-entropy alloys (HEAs) were investigated using small-angle scattering and in situ neutron diffraction measurements. Small-angle scattering results demonstrated the presence of nano ($$>$$10 nm) chemical fluctuations in the as-prepared CrFeCoNiPd HEAs, which was attributed to the negative mixing of enthalpy and the significant atomic radius difference between Pd and the constituent elements in the CrFeCoNi-based alloys. Subsequent tensile tests demonstrated that the yield and tensile strengths of the as-prepared CrFeCoNiPd HEA surpass those of the as-prepared CrMnFeCoNi HEA. Neutron diffraction data analysis revealed an anomalous response of dislocation evolution with the strain.

論文

Gradient residual strain determination of surface impacted railway S38C axles by neutron Bragg-edge transmission imaging

Hu, F. F.*; Qin, T. Y.*; Ao, N.*; Su, Y. H.; Zhou, L.*; 徐 平光; Parker, J. D.*; 篠原 武尚; Chen, J.*; Wu, S. C.*

Engineering Fracture Mechanics, 306, p.110267_1 - 110267_18, 2024/08

 被引用回数:2 パーセンタイル:60.53(Mechanics)

Non-destructive and quantitative mapping of gradient residual strain distribution in surface-hardened railway S38C axles could provide a positive reference for determining service lifetime and maintenance strategy. To tackle this concern, time-of-flight neutron Bragg-edge transmission imaging was employed by real axle samples with and without impacted crater. A novel and simple procedure to formulate the residual strain field was also developed in this work, with the transmission batch code in Appendix A. By mapping the global two- dimensional residual strains, it can be verified that the residual strains into the axle are uniformly distributed in the hoop direction. Subsequently, it was revealed that the axial and hoop residual strains, respectively in the cylinder and the long strip samples prepared from a real S38C hollow axle, indicated a gradient evolution distribution with a depth of $$sim$$ 8 mm, covering a range of -5500 $$sim$$ 1000 $$mu$$$$varepsilon$$ for axial strains and -6500 $$sim$$ 1000 $$mu$$$$varepsilon$$ for hoop strains. More importantly, the maximum compressive lattice strain of the cylinder sample was increased by 15.61%, and 22.35% at the impacting speeds of 100, and 125 m/s, respectively; and that of the long strip sample increased by 29.17%, and 43.70%, respectively. It can thus be concluded that lattice strains have redistributed around the impact crater, demonstrating the local alteration of the residual strain field. These new findings suggest the localized variation in residual strains should be taken into account while evaluating the service damage evolution of railway axles, especially those affected by high-speed impacts during operation.

論文

Gradient residual stress and fatigue life prediction of induction hardened carbon steel S38C axles; Experiment and simulation

Qin, T. Y.*; Hu, F. F.*; 徐 平光; Zhang, H.*; Zhou, L.*; Ao, N.*; Su, Y. H.; 菖蒲 敬久; Wu, S. C.*

International Journal of Fatigue, 185, p.108336_1 - 108336_13, 2024/08

 被引用回数:8 パーセンタイル:94.71(Engineering, Mechanical)

Gradient distribution of triaxial residual stresses to a depth of several millimeters is retained in middle carbon steel S38C axles after high-frequency induction hardening, which has become a critical concern for fatigue structural integrity. To address this, the axial, hoop, and radial gradient residual strains inside the axles were measured for the first time by advanced neutron diffraction. The SIGINI Fortran subroutine was then adopted to reconstruct the global initial residual stress field from the measured data. Experimental and simulation results show that residual stresses of about -520 MPa (axial), -710 MPa (hoop), and -40 MPa (radial) residual stress were retained below the axle surface. Subsequently, the fatigue crack propagation behavior of S38C axles was numerically investigated in the framework of fracture mechanics. The calculated results clearly show that the compressive residual stresses at a depth of 0?3 mm from the axle surface lead to a low crack growth driving force, and that fatigue cracks do not propagate as long as the crack depth is less than 3.7 mm for hollow S38C axles. These results further indicate that the maximum defect size allowed in routine inspections is acceptable from a safety and economic point of view. Accurate measurement and characterization of the global gradient residual stress field through experiments and simulations can provide an important reference for optimizing the mileage intervals of nondestructive testing (NDT) of surface defects in these surface-strengthened railway axles.

論文

Gradient residual strain measurement procedure in surface impacted railway steel axles by using neutron scattering

Zhou, L.*; Zhang, H.*; Qin, T. Y.*; Hu, F. F.*; 徐 平光; Ao, N.*; Su, Y. H.; He, L. H.*; Li, X. H.*; Zhang, J. R.*; et al.

Metallurgical and Materials Transactions A, 55(7), p.2175 - 2185, 2024/07

 被引用回数:3 パーセンタイル:75.40(Materials Science, Multidisciplinary)

High-speed railway S38C axles undergo surface induction hardening for durability, but are susceptible to fatigue cracks from foreign object impact. The neutron diffraction method was employed to measure the residual strain in S38C axles, obtaining microscopic lattice distortion data, for the gradient layer at a depth of 8 mm under the surface. The results showed that after induction-hardening, the microscopic lattice distortion had a gradient distribution, decreasing with the distance from the surface. However, in the case of impacting speed of 600 km/m, the average microscopic lattice distortion increased with the distance from the surface, reaching a maximum augmentation of 55 pct. These findings indicate a strong experimental basis, and improve our understanding of the relationship between macroscopic residual stress and decision-making, in regard to operation and maintenance.

論文

A Systematic approach for the adequacy analysis of a set of experimental databases; Application in the framework of the ATRIUM activity

Baccou, J.*; Glantz, T.*; Ghione, A.*; Sargentini, L.*; Fillion, P.*; Damblin, G.*; Sueur, R.*; Iooss, B.*; Fang, J.*; Liu, J.*; et al.

Nuclear Engineering and Design, 421, p.113035_1 - 113035_16, 2024/05

 被引用回数:6 パーセンタイル:97.32(Nuclear Science & Technology)

In the Best-Estimate Plus Uncertainty (BEPU) framework, the use of best-estimate code requires to go through a Verification, Validation and Uncertainty Quantification process (VVUQ). The relevance of the experimental data in relation to the physical phenomena of interest in the VVUQ process is crucial. Adequacy analysis of selected experimental databases addresses this problem. The outcomes of the analysis can be used to select a subset of relevant experimental data, to encourage designing new experiments or to drop some experiments from a database because of their substantial lack of adequacy. The development of a specific transparent and reproducible approach to analyze the relevance of experimental data for VVUQ still remains open and is the topic of this contribution. In this paper, the concept of adequacy initially introduced in the OECD/NEA SAPIUM (Systematic APproach for model Input Uncertainty quantification Methodology) activity is formalized. It is defined through two key properties, called representativeness and completeness, that allows considering the multifactorial dimension of the adequacy problem. A new systematic approach is then proposed to analyze the adequacy of a set of experimental databases. It relies on the introduction of two sets of criteria to characterize representativeness and completeness and on the use of multi-criteria decision analysis method to perform the analysis. Finally, the approach is applied in the framework of the new OECD/NEA ATRIUM activity which includes a set of practical IUQ exercises in thermal-hydraulics to test the SAPIUM guideline in determining input uncertainties and forward propagating them on an application case. It allows evaluating the adequacy of eight experimental databases coming from the Super Moby-dick, Sozzi-Sutherland and Marviken experiments and identifying the most adequate ones.

論文

Development of an Fe$$^{rm II}$$ complex exhibiting intermolecular proton shifting coupled spin transition

Ji, T.*; Su, S.*; Wu, S.*; 堀 優太*; 重田 育照*; Huang, Y.*; Zheng, W.*; Xu, W.*; Zhang, X.*; 鬼柳 亮嗣; et al.

Angewandte Chemie; International Edition, 63(25), p.e202404843_1 - e202404843_6, 2024/04

 被引用回数:0 パーセンタイル:0.00(Chemistry, Multidisciplinary)

In this study, we investigated reversible intermolecular proton shifting (IPS) coupled with spin transition (ST) in a novel Fe$$^{rm II}$$ complex. The host Fe$$^{rm II}$$ complex and the guest carboxylic acid anion were connected by intermolecular hydrogen bonds (IHBs). We extended the intramolecular proton transfer coupled ST phenomenon to the intermolecular system. The dynamic phenomenon was confirmed by variable-temperature single-crystal X-ray diffraction, neutron crystallography, and infrared spectroscopy.

論文

Adsorption behavior of platinum-group metals and Co-existing metal ions from simulated high-level liquid waste using HONTA and Crea impregnated adsorbent

大沢 直樹*; Kim, S.-Y.*; 久保田 真彦*; Wu, H.*; 渡部 創; 伊藤 辰也; 永石 隆二

Nuclear Engineering and Technology, 56(3), p.812 - 818, 2024/03

 被引用回数:2 パーセンタイル:57.00(Nuclear Science & Technology)

An impregnated silica-based adsorbent was prepared by combining HONTA extractant, Crea extractant, and macroporous silica polymer composite particles (SiO$$_{2}$$-P). The performance of platinum-group metals adsorption and separation on prepared (HONTA + Crea)/SiO$$_{2}$$-P adsorbent was assessed by batch-adsorption and chromatographic separation studies. (HONTA + Crea)/SiO$$_{2}$$-P adsorbent showed high adsorption performance of Pd(II) owing to an affinity between Pd(II) and Crea extractant based on the Hard and Soft Acids and Bases theory. The chromatographic experiment showed that Pd(II) was recovered entirely from the feed solution using 0.2 M thiourea in 0.1 M HNO$$_{3}$$. Possibility of recovery of Zr(IV), Mo(VI), and Re(VII) was also observed using the (HONTA + Crea)/SiO$$_{2}$$-P adsorbent.

論文

Probing deformation behavior of a refractory high-entropy alloy using ${it in situ}$ neutron diffraction

Zhou, Y.*; Song, W.*; Zhang, F.*; Wu, Y.*; Lei, Z.*; Jiao, M.*; Zhang, X.*; Dong, J.*; Zhang, Y.*; Yang, M.*; et al.

Journal of Alloys and Compounds, 971, p.172635_1 - 172635_7, 2024/01

 被引用回数:2 パーセンタイル:12.80(Chemistry, Physical)

The grain orientation-dependent lattice strain evolution of a (TiZrHfNb)$$_{98}$$$$N_2$$ refractory high-entropy alloy (HEA) during tensile loading has been investigated using ${it in situ}$ neutron diffraction. The equivalent strain-hardening rate of each of the primary $$<hkl>$$-oriented grain families was found to be relatively low, manifesting the macroscopically weak work-hardening ability of such a body-centered cubic (BCC)-structured HEA. This finding is indicative of a dislocation planar slip mode that is confined in a few single-slip planes and leads to in-plane softening by high pile-up stresses.

論文

3D-printed epidermal sweat microfluidic systems with integrated microcuvettes for precise spectroscopic and fluorometric biochemical assays

Yang, D. S.*; Wu, Y.*; Kanatzidis, E. E.*; Avila, R.*; Zhou, M.*; Bai, Y.*; Chen, S.*; 関根 由莉奈; Kim, J.*; Deng, Y.*; et al.

Materials Horizons, 10(11), p.4992 - 5003, 2023/09

 被引用回数:12 パーセンタイル:79.80(Chemistry, Multidisciplinary)

本論文では、ハード及びソフトハイブリッド材料システムでの3Dプリントによって形成されたマイクロ流体ネットワーク、統合バルブ、およびマイクロスケール光学キュベットにより、汗成分に対してその場で分光および蛍光分析した成果を紹介する。一連の試験により、これらのマイクロキュベットシステムが汗中の銅、塩化物、グルコースの濃度と汗のpHを実験室レベルの精度と感度で評価できることが実証された。

論文

Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag$$_{8}$$SnSe$$_{6}$$

Ren, Q.*; Gupta, M. K.*; Jin, M.*; Ding, J.*; Wu, J.*; Chen, Z.*; Lin, S.*; Fabelo, O.*; Rodriguez-Velamazan, J. A.*; 古府 麻衣子; et al.

Nature Materials, 22(8), p.999 - 1006, 2023/08

 被引用回数:76 パーセンタイル:99.20(Chemistry, Physical)

Ultralow thermal conductivity and fast ionic diffusion endow superionic materials with excellent performance both as thermoelectric converters and as solid-state electrolytes. Yet the correlation and interdependence between these two features remain unclear owing to a limited understanding of their complex atomic dynamics. Here we investigate ionic diffusion and lattice dynamics in argyrodite Ag$$_{8}$$SnSe$$_{6}$$ using synchrotron X-ray and neutron scattering techniques along with machine-learned molecular dynamics. We identify a critical interplay of the vibrational dynamics of mobile Ag and a host framework that controls the overdamping of low-energy Ag-dominated phonons into a quasi-elastic response, enabling superionicity. Concomitantly, the persistence of long-wavelength transverse acoustic phonons across the superionic transition challenges a proposed 'liquid-like thermal conduction' picture. Rather, a striking thermal broadening of low-energy phonons, starting even below 50 K, reveals extreme phonon anharmonicity and weak bonding as underlying features of the potential energy surface responsible for the ultralow thermal conductivity ($$<$$ 0.5 Wm$$^{-1}$$K$$^{-1}$$) and fast diffusion. Our results provide fundamental insights into the complex atomic dynamics in superionic materials for energy conversion and storage.

論文

Intercorrelated anomalous Hall and spin Hall effect in kagome-lattice Co$$_{3}$$Sn$$_{2}$$S$$_{2}$$-based shandite films

Lau, Y.-C.*; 池田 絢哉*; 藤原 宏平*; 小沢 耀弘*; Zheng, J.*; 関 剛斎*; 野村 健太郎*; Du, L.*; Wu, Q.*; 塚崎 敦*; et al.

Physical Review B, 108(6), p.064429_1 - 064429_11, 2023/08

 被引用回数:8 パーセンタイル:74.51(Materials Science, Multidisciplinary)

Magnetic Weyl semimetals (mWSMs) are characterized by linearly dispersive bands with chiral Weyl node pairs associated with broken time-reversal symmetry. One of the hallmarks of mWSMs is the emergence of large intrinsic anomalous Hall effect. On heating the mWSM above its Curie temperature, the magnetism vanishes while exchange-split Weyl point pairs collapse into doubly degenerate gapped Dirac states. Here, we reveal the attractive potential of these Dirac nodes in paramagnetic state for efficient spin current generation at room temperature via the spin Hall effect. Ni and In are introduced to separately substitute Co and Sn in a prototypal mWSM Co$$_{3}$$Sn$$_{2}$$S$$_{2}$$ shandite film and tune the Fermi level. Composition dependence of spin Hall conductivity for paramagnetic shandite at room temperature resembles that of anomalous Hall conductivity for ferromagnetic shandite at low temperature; exhibiting peak-like dependence centering around the Ni-substituted Co$$_{3}$$Ni$$_{1}$$Sn$$_{2}$$S$$_{2}$$ and undoped Co$$_{3}$$Sn$$_{2}$$S$$_{2}$$ compositions, respectively. The observed spin Hall and anomalous Hall conductivity maxima at different compositions reflect optimum Fermi-level positioning relative to the paramagnetic Dirac and magnetic Weyl states, suggesting the common origin and intercorrelation between the two Hall effects. Our findings highlight a strategy for the quest of spin Hall materials, guided by the abundant experimental anomalous Hall-effect data of ferromagnets in the literature.

論文

Pressure engineering of van der Waals compound RhI$$_3$$; Bandgap narrowing, metallization, and remarkable enhancement of photoelectric activity

Fang, Y.*; Kong, L.*; Wang, R.*; Zhang, Z.*; Li, Z.*; Wu, Y.*; Bu, K.*; Liu, X.*; Yan, S.*; 服部 高典; et al.

Materials Today Physics (Internet), 34, p.101083_1 - 101083_7, 2023/05

 被引用回数:8 パーセンタイル:74.51(Materials Science, Multidisciplinary)

層状ファンデルワールスハライドは、外部圧力に対して特に敏感であるため、目的とする性質を持つ構造にチューンすることが可能となる。一方で、圧力に非常に敏感であるという特性は、同時に目的とする機能の実現に有害な相転移や格子歪みを引き起こす可能性があるためその操作は依然として困難である。この研究では、層状RhI$$_3$$結晶が持つ極めて弱い層間結合と高い機能可変性を観察した。5GPaという適度な圧力をかけると圧力誘起相転移が起こり、積層構造に変化が現れた。驚くべきことに、この相転移は、圧力に対してほぼ直線的なバンドギャップ減少という傾向に影響を与えなかった。また、より高い圧力では、1.3eVの赤方偏移というかなり大きな調整幅を伴う金属相が観測された。さらに、RhI$$_3$$のキャリア濃度は30GPaで4桁増加し、光電流は7.8GPaで5桁増加することが確認された。これらの結果は、ファンデルワールスハライドの層状構造という特異な特徴を生かした探索、調整、理解のための新たな機会を創出し、原子レベルの薄さを持つマテリアルバイデザインに基づく将来のデバイスとして有望である。

論文

Corrosion fatigue crack growth behavior of a structurally gradient steel for high-speed railway axles

Ao, N.*; Zhang, H.*; Xu, H. H.*; Wu, S. C.*; Liu, D.*; 徐 平光; Su, Y. H.; Kang, Q. H.*; Kang, G. Z.*

Engineering Fracture Mechanics, 281, p.109166_1 - 109166_14, 2023/03

 被引用回数:12 パーセンタイル:83.88(Mechanics)

Considering the complex service environments that high-speed railway axles are subjected to, the fatigue crack growth (FCG) behavior of a structurally gradient axle steel with different pre-crack depths both in air and corrosive medium was investigated at a frequency of 5 Hz. The results indicated that in the high $$Delta$$$$K$$ region, FCG rate was dramatically accelerated by corrosion, but the gap narrows as $$Delta$$$$K$$ decreased. The accelerated corrosion FCG rate was a comprehensive result of the acceleration effect of the anodic dissolution, hydrogen-enhanced localized plasticity and the retardation effect of corrosion-induced crack-tip blunting. Despite the fact that the corrosion resistance gradually decreased as the pre-crack depth increased, the FCG rate in the corrosive medium gradually decreased. This was because fatigue loading played a more important role than corrosion in accelerating the corrosion FCG rate.

論文

Fatigue crack non-propagation behavior of a gradient steel structure from induction hardened railway axles

Zhang, H.*; Wu, S. C.*; Ao, N.*; Zhang, J. W.*; Li, H.*; Zhou, L.*; 徐 平光; Su, Y. H.

International Journal of Fatigue, 166, p.107296_1 - 107296_11, 2023/01

 被引用回数:18 パーセンタイル:83.58(Engineering, Mechanical)

Abnormal damages in railway axles can lead to a significant hazard to running safety and reliability. To this end, a surface treatment was selected to effectively inhibit fatigue crack initiation and growth. In this study, a single edge notch bending fatigue test campaign with artificial notches was conducted to elucidate the fatigue crack non-propagation behavior in railway S38C axles subjected to an induction hardening process. The fatigue cracking behavior in the gradient structure was revealed by optical microscopy, electron backscatter diffraction, and fractography. The microhardness distribution was measured using a Vickers tester. The obtained results show that the microhardness of the strengthening layer is nearly triple that of the matrix. Owing to the gradient microstructures and hardness, as well as compressive residual stress, the fatigue long crack propagates faster once it passes through the hardened zone (approximately 2.0 mm in the radial depth). Thereafter, local retarding (including deflection, branching, and blunting) of the long crack occurs because of the relatively coarse ferrite and pearlite in the transition region and matrix. Totally, this fatigue cracking resistance is reasonably believed to be due to the gradient microstructure and residual stress. These findings help to tailor a suitable detection strategy for maximum defects or cracks in railway axles.

論文

Experimental evidence for the significance of optical phonons in thermal transport of tin monosulfide

Wu, P.*; 村井 直樹; Li, T.*; 梶本 亮一; 中村 充孝; 古府 麻衣子; 中島 健次; Xia, K.*; Peng, K.*; Zhang, Y.*; et al.

New Journal of Physics (Internet), 25(1), p.013032_1 - 013032_11, 2023/01

 被引用回数:0 パーセンタイル:0.00(Physics, Multidisciplinary)

The understanding of the lattice dynamics is essential for engineering the thermal transport properties in quantum materials. Based on the canonical point of view, acoustic phonons are believed to be the principal thermal carriers in heat flow. Here, in this work, optical phonons are elucidated to play a pivotal role in determining the lattice thermal conductivity in thermoelectric material SnS by using the state-of-the-art inelastic neutron scattering technique combined with first-principles calculations. Additionally, in contrast to acoustic phonons, optical phonons are observed to exhibit pronounced softening and broadening with temperature. Our observations not only shed light on the significance of the optical phonons in thermal transport but also provide a vital clue to suppress the propagation of optical phonons to optimize the thermoelectric performance of SnS.

論文

Design of MA(III)/Ln(III) separation process of extraction chromatography technology

阿久澤 禎*; Kim, S.-Y.*; 久保田 真彦*; Wu, H.*; 渡部 創; 佐野 雄一; 竹内 正行; 新井 剛*

Journal of Radioanalytical and Nuclear Chemistry, 331(12), p.5851 - 5858, 2022/12

 被引用回数:5 パーセンタイル:61.74(Chemistry, Analytical)

In this work, we have examined Ln(III) and MA(III) separation conditions by the extraction chromatography using HONTA adsorbent to decide the Ln(III)/MA(III) separation process fow. From the research results, we found the simulated element of Am(III) for HONTA adsorbent and the conditions to use it. In addition, Ln(III) and Am(III) (simulated element) separation experiments were carried out using the HONTA adsorbent packed column, we have determined the column separation conditions for Am(III) such as order of fow solution and fow rate.

論文

Ten years of warming increased plant-derived carbon accumulation in an East Asian monsoon forest

Zhang, J.*; Kuang, L.*; Mou, Z.*; 近藤 俊明*; 小嵐 淳; 安藤 麻里子; Li, Y.*; Tang, X.*; Wang, Y.-P.*; Pe$~n$uelas, J.*; et al.

Plant and Soil, 481(1-2), p.349 - 365, 2022/12

 被引用回数:10 パーセンタイル:73.14(Agronomy)

Soil warming effects on soil organic carbon (SOC) decomposition and stabilization are highly variable, and the underlying mechanisms are poorly understood. In this study, concentration, stability (dissolved, particle and mineral-associated SOC), and source (plant-derived and microbial-derived) of SOC, soil microbial community composition, and enzyme activities were studied in a 10-year soil warming field experiment in an East Asian monsoon forest. The results showed that 10-year soil warming significantly enhanced SOC in the top 0-10 cm soil. The increased SOC induced by warming was mainly derived from plants with lignin markers, accompanied by a decrease in microbial-derived SOC. This highlights an urgent need for a better understanding of how the contrasting effects of plant- and microbial-derived C mediate the response of the SOC pool to warming across different biomes.

論文

Two-dimensional quantum universality in the spin-1/2 triangular-lattice quantum antiferromagnet Na$$_{2}$$BaCo(PO$$_{4}$$)$$_{2}$$

Sheng, J.*; Wang, L.*; Candini, A.*; Jiang, W.*; Huang, L.*; Xi, B.*; Zhao, J.*; Ge, H.*; Zhao, N.*; Fu, Y.*; et al.

Proceedings of the National Academy of Sciences of the United States of America, 119(51), p.e2211193119_1 - e2211193119_9, 2022/12

 被引用回数:30 パーセンタイル:93.24(Multidisciplinary Sciences)

Although considerable progress has been made in the theoretical understanding of the low-dimensional frustrated quantum magnets, experimental realizations of a well-established scaling analysis are still scarce. This is particularly true for the two-dimensional antiferromagnetic triangular lattices. Owing to the small exchange strength, the newly discovered compound Na$$_{2}$$BaCo(PO$$_{4}$$)$$_{2}$$ provides a rare opportunity for clarifying the quantum criticality in an ideal triangular lattice with quantum spin S=1/2. In addition to the establishment of the complete phase diagrams, the spin Hamiltonian with a negligible interplane interaction has been determined through the spin wave dispersion in the polarized state, which is consistent with the observation of a two-dimensional quantum critical point with the Bose-Einstein condensation of diluted free bosons.

96 件中 1件目~20件目を表示