Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Brumm, S.*; Gabrielli, F.*; Sanchez Espinoza, V.*; Stakhanova, A.*; Groudev, P.*; Petrova, P.*; Vryashkova, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; et al.
Annals of Nuclear Energy, 211, p.110962_1 - 110962_16, 2025/02
被引用回数:5 パーセンタイル:90.97(Nuclear Science & Technology)The completed Horizon-2020 project on "Management and Uncertainties of Severe Accidents (MUSA)" has reviewed uncertainty sources and Uncertainty Quantification methodology for the purpose of assessing Severe Accidents (SA). The key motivation of the project has been to bring the advantages of the Best Estimate Plus Uncertainty approach to the field of Severe Accident. The applications brought together a large group of participants that set out to apply uncertainty analysis (UA) within their field of SA modelling expertise, in particular reactor types, but also SA code used (ASTEC, MELCOR, etc.), uncertainty quantification tools used (DAKOTA, RAVEN, etc.), detailed accident scenarios, and in some cases SAM actions. This paper synthesizes the reactor-application work at the end of the project. Analyses of 23 partners are sorted into different categories, depending on whether their main goal is/are (i) uncertainty bands of simulation results; (ii) the understanding of dominating uncertainties in specific sub-models of the SA code; (iii) improving the understanding of specific accident scenarios, with or without the application of SAM actions; or, (iv) a demonstration of the tools used and developed, and of the capability to carry out an uncertainty analysis in the presence of the challenges faced. The partners' experiences made during the project have been evaluated and are presented as good practice recommendations. The paper ends with conclusions on the level of readiness of UA in SA modelling, on the determination of governing uncertainties, and on the analysis of SAM actions.
Strobl, M.*; Baur, M. E.*; Samothrakitis, S.*; Molamud, F.*; Zhang, X.*; Tung, P. K. M.*; Schmidt, S.*; Woracek, R.*; Lee, J.*; 鬼柳 亮嗣; et al.
Advanced Energy Materials, p.2405238_1 - 2405238_9, 2025/01
Energy-efficient, safe, and reliable Li-ion batteries (LIBs) are required for a wide range of applications. The introduction of ultra-thick graphite anodes, desired for high energy densities, meets limitations in internal electrode transport properties, leading to detrimental consequences. Yet, there is a lack of experimental tools capable of providing a complete view of local processes. Here, a multi-modal measurement approach is introduced, enabling quantitative spatio-temporal observations of Li concentrations and intercalation phases in ultra-thick graphite electrodes. Neutron imaging and diffraction concurrently provide correlated multiscale information from the scale of the cell down to the crystallographic scale. In particular, the evolving formation of the solid electrolyte interphase (SEI), observation of gradients in total lithium content, as well as in the formation of ordered Li
C
phases and trapped lithium are mapped throughout the first charge-discharge cycle of the cell. Different lithiation stages co-exist during charging and discharging; delayed lithiation and delithiation processes are observed in central regions of the electrode, while the SEI formation, potential plating, and dead lithium are predominantly found closer to the interface with the separator. The study emphasizes the potential to investigate Li-ion diffusion and the kinetics of lithiation phase formation in thick electrodes.
Liu, P.-F.*; Li, X.*; Li, J.*; Zhu, J.*; Tong, Z.*; 古府 麻衣子*; 楡井 真実; Xu, J.*; Yin, W.*; Wang, F.*; et al.
National Science Review, 11(12), p.nwae216_1 - nwae216_10, 2024/12
被引用回数:8 パーセンタイル:92.79(Multidisciplinary Sciences)Crystalline solids exhibiting inherently low lattice thermal conductivity () are of great importance in applications such as thermoelectrics and thermal barrier coatings. However,
cannot be arbitrarily low and is limited by the minimum thermal conductivity related to phonon dispersions. In this work, we report the liquid-like thermal transport in a well-ordered crystalline CsAg
Te
, which exhibits an extremely low
value of
0.18 Wm
K
. On the basis of first-principles calculations and inelastic neutron scattering measurements, we find that there are lots of low-lying optical phonon modes at
3.1 meV hosting the avoided-crossing behavior with acoustic phonons. These strongly localized modes are accompanied by weakly bound rattling Ag atoms with thermally induced large amplitudes of vibrations. Using the two-channel model, we demonstrate that coupling of the particle-like phonon modes and the heat-carrying wave-like phonons is essential for understanding the low
, which is heavily deviated from the
temperature dependence of the standard Peierls theory. In addition, our analysis indicates that the soft structural framework with liquid-like motions of the fluctuating Ag atoms is the underlying cause that leads to the suppression of the heat conduction in CsAg
Te
. These factors synergistically account for the ultralow
value. Our results demonstrate that the liquid-like heat transfer could indeed exist in a well-ordered crystal.
Qin, T. Y.*; Hu, F. F.*; 徐 平光; Zhang, H.*; Zhou, L.*; Ao, N.*; Su, Y. H.; 菖蒲 敬久; Wu, S. C.*
International Journal of Fatigue, 185, p.108336_1 - 108336_13, 2024/08
被引用回数:8 パーセンタイル:95.79(Engineering, Mechanical)Gradient distribution of triaxial residual stresses to a depth of several millimeters is retained in middle carbon steel S38C axles after high-frequency induction hardening, which has become a critical concern for fatigue structural integrity. To address this, the axial, hoop, and radial gradient residual strains inside the axles were measured for the first time by advanced neutron diffraction. The SIGINI Fortran subroutine was then adopted to reconstruct the global initial residual stress field from the measured data. Experimental and simulation results show that residual stresses of about -520 MPa (axial), -710 MPa (hoop), and -40 MPa (radial) residual stress were retained below the axle surface. Subsequently, the fatigue crack propagation behavior of S38C axles was numerically investigated in the framework of fracture mechanics. The calculated results clearly show that the compressive residual stresses at a depth of 0?3 mm from the axle surface lead to a low crack growth driving force, and that fatigue cracks do not propagate as long as the crack depth is less than 3.7 mm for hollow S38C axles. These results further indicate that the maximum defect size allowed in routine inspections is acceptable from a safety and economic point of view. Accurate measurement and characterization of the global gradient residual stress field through experiments and simulations can provide an important reference for optimizing the mileage intervals of nondestructive testing (NDT) of surface defects in these surface-strengthened railway axles.
Fang, W.*; Liu, C.*; Zhang, J.*; 徐 平光; Peng, T.*; Liu, B.*; 諸岡 聡; Yin, F.*
Scripta Materialia, 249, p.116046_1 - 116046_6, 2024/08
被引用回数:2 パーセンタイル:67.89(Nanoscience & Nanotechnology)The influence of interstitial carbon on the texture evolution of high-entropy alloys during cold rolling was investigated. To prevent carbide formation, elements with weak carbon affinity were carefully selected in the (FeMnCoNi)C
alloy. Neutron diffraction, electron channeling contrast imaging, and electron backscatter diffraction were used to analyze the texture and microstructure evolution in alloys with and without carbon addition. Though their texture components are similar at the early stage of deformation, the Brass and Goss textures in the carbon-containing alloy at 50% cold rolling reduction are obviously higher than those in the carbon-free alloy, while Copper and S textures are lower. A large number of deformation twins induced in the carbon containing alloy is attributed as the significant reason for the texture differences. This work helps to understand the impact of interstitial carbon on the texture evolution of high-entropy alloys, providing valuable insights for microstructure and performance optimization.
Zhou, L.*; Zhang, H.*; Qin, T. Y.*; Hu, F. F.*; 徐 平光; Ao, N.*; Su, Y. H.; He, L. H.*; Li, X. H.*; Zhang, J. R.*; et al.
Metallurgical and Materials Transactions A, 55(7), p.2175 - 2185, 2024/07
被引用回数:3 パーセンタイル:78.83(Materials Science, Multidisciplinary)High-speed railway S38C axles undergo surface induction hardening for durability, but are susceptible to fatigue cracks from foreign object impact. The neutron diffraction method was employed to measure the residual strain in S38C axles, obtaining microscopic lattice distortion data, for the gradient layer at a depth of 8 mm under the surface. The results showed that after induction-hardening, the microscopic lattice distortion had a gradient distribution, decreasing with the distance from the surface. However, in the case of impacting speed of 600 km/m, the average microscopic lattice distortion increased with the distance from the surface, reaching a maximum augmentation of 55 pct. These findings indicate a strong experimental basis, and improve our understanding of the relationship between macroscopic residual stress and decision-making, in regard to operation and maintenance.
Baccou, J.*; Glantz, T.*; Ghione, A.*; Sargentini, L.*; Fillion, P.*; Damblin, G.*; Sueur, R.*; Iooss, B.*; Fang, J.*; Liu, J.*; et al.
Nuclear Engineering and Design, 421, p.113035_1 - 113035_16, 2024/05
被引用回数:6 パーセンタイル:97.93(Nuclear Science & Technology)In the Best-Estimate Plus Uncertainty (BEPU) framework, the use of best-estimate code requires to go through a Verification, Validation and Uncertainty Quantification process (VVUQ). The relevance of the experimental data in relation to the physical phenomena of interest in the VVUQ process is crucial. Adequacy analysis of selected experimental databases addresses this problem. The outcomes of the analysis can be used to select a subset of relevant experimental data, to encourage designing new experiments or to drop some experiments from a database because of their substantial lack of adequacy. The development of a specific transparent and reproducible approach to analyze the relevance of experimental data for VVUQ still remains open and is the topic of this contribution. In this paper, the concept of adequacy initially introduced in the OECD/NEA SAPIUM (Systematic APproach for model Input Uncertainty quantification Methodology) activity is formalized. It is defined through two key properties, called representativeness and completeness, that allows considering the multifactorial dimension of the adequacy problem. A new systematic approach is then proposed to analyze the adequacy of a set of experimental databases. It relies on the introduction of two sets of criteria to characterize representativeness and completeness and on the use of multi-criteria decision analysis method to perform the analysis. Finally, the approach is applied in the framework of the new OECD/NEA ATRIUM activity which includes a set of practical IUQ exercises in thermal-hydraulics to test the SAPIUM guideline in determining input uncertainties and forward propagating them on an application case. It allows evaluating the adequacy of eight experimental databases coming from the Super Moby-dick, Sozzi-Sutherland and Marviken experiments and identifying the most adequate ones.
Li, J.*; Li, X.*; Zhang, Y.*; Zhu, J.*; Zhao, E.*; 古府 麻衣子; 中島 健次; Avdeev, M.*; Liu, P.-F.*; Sui, J.*; et al.
Applied Physics Reviews (Internet), 11(1), p.011406_1 - 011406_8, 2024/03
被引用回数:7 パーセンタイル:92.96(Physics, Applied)The desire for intrinsically low lattice thermal conductivity () in thermoelectrics motivates numerous efforts on understanding the microscopic mechanisms of heat transport in solids. Here, based on theoretical calculations, we demonstrate that
-MgAgSb hosts low-energy localized phonon bands and avoided crossing of the rattler modes, which coincides with the inelastic neutron scattering result. Using the two-channel lattice dynamical approach, we find, besides the conventional contribution (
70% at 300 K) from particlelike phonons propagating, the coherence contribution dominated by the wavelike tunneling of phonons accounts for
30% of total
at 300 K. By considering dual contributions, our calculated room-temperature
of 0.64 Wm
K
well agrees with the experimental value of 0.63 Wm
K
. More importantly, our computations give a nonstandard
dependence, perfectly explaining the abnormal temperature-trend of
in experiment for
-MgAgSb. By molecular dynamics simulation, we reveal that the structure simultaneously has soft crystalline sublattices with the metavalent bonding and fluctuating liquid-like sublattices with thermally induced large amplitude vibrations. These diverse forms of chemical bonding arouse mixed part-crystal part-liquid state, scatter strongly heat-carrying phonons, and finally produce extremely low
. The fundamental research from this study will accelerate the design of ultralow-
materials for energy-conversion applications.
Li, C.*; Fang, W.*; Yu, H. Y.*; Peng, T.*; Yao, Z. T.*; Liu, W. G.*; Zhang, X.*; 徐 平光; Yin, F.*
Materials Science & Engineering A, 892, p.146096_1 - 146096_11, 2024/02
被引用回数:4 パーセンタイル:78.83(Nanoscience & Nanotechnology)The quasi-static superelastic responses and hierarchical martensite transformation from body-centered cubic (BCC) to face-centered cubic (FCC) under dynamic impact in FeMn
Al
Ni
Ti
alloys were investigated. Polycrystalline and oligocrystalline alloys were produced through solution heat treatment and cyclic heat treatment processes, respectively. The results show the volume fraction of residual martensite for oligocrystalline alloys is lower, which exhibits better superelastic responses compared with polycrystalline alloys. Dynamic impact tests indicate that, despite the weakening of the grain boundary strengthening effect, the ultimate strength of the oligocrystalline alloys closely matches that of the polycrystalline alloys under dynamic impact. The martensite transformation of the FeMnAlNiTi alloy is characterized as hierarchical under dynamic impact, and increasing strain rates and grain sizes can enhance the BCC
FCC martensite transformation, resulting in higher martensite phase fractions for oligocrystalline alloys. The increase in ultimate strength is attributed to the dynamic Hall-Petch effect introduced by more martensite phase interfaces under dynamic impact.
Zhou, Y.*; Song, W.*; Zhang, F.*; Wu, Y.*; Lei, Z.*; Jiao, M.*; Zhang, X.*; Dong, J.*; Zhang, Y.*; Yang, M.*; et al.
Journal of Alloys and Compounds, 971, p.172635_1 - 172635_7, 2024/01
被引用回数:1 パーセンタイル:13.75(Chemistry, Physical)The grain orientation-dependent lattice strain evolution of a (TiZrHfNb) refractory high-entropy alloy (HEA) during tensile loading has been investigated using
neutron diffraction. The equivalent strain-hardening rate of each of the primary
-oriented grain families was found to be relatively low, manifesting the macroscopically weak work-hardening ability of such a body-centered cubic (BCC)-structured HEA. This finding is indicative of a dislocation planar slip mode that is confined in a few single-slip planes and leads to in-plane softening by high pile-up stresses.
Esser, S. P.*; Rahlff, J.*; Zhao, W.*; Predl, M.*; Plewka, J.*; Sures, K.*; Wimmer, F.*; Lee, J.*; Adam, P. S.*; McGonigle, J.*; et al.
Nature Microbiology (Internet), 8(9), p.1619 - 1633, 2023/09
被引用回数:7 パーセンタイル:79.01(Microbiology)CRISPR-Cas systems defend prokaryotic cells from viruses, plasmids, and other mobile genetic elements. Capitalizing on multi-omics approaches, we show here that the CRISPR-Cas systems of uncultivated archaea also play an integral role in mitigating potentially detrimental interactions with episymbionts. A comprehensive analysis of CRISPR-Cas-based infection histories revealed that uncultivated deep-subsurface archaeal primary-producers defend themselves from archaeal episymbionts of the DPANN superphylum of archaea, some of which are known to fuse their membranes with their host. We show that host cells counter these attacks by deploying one of two CRISPR-Cas systems (type I-B and type III-A) to target and disrupt essential genes in the episymbiont. However, genome-scale modeling of metabolic interactions between two deep subsurface host-symbiont systems revealed that host cells also benefit from the symbionts via metabolic complementation. We speculate that populations of these uncultivated archaeal episymbionts are currently transitioning from a parasitic lifestyle to one of mutualism, as must have occurred in countless mutualistic systems known today. By expanding our analysis to thousands of archaeal genomes, we conclude that CRISPR-Cas mediated resistance to archaeal episymbiosis evolved independently in various archaeal lineages and may be a wide-spread evolutionary phenomenon.
Shangguan, Y.*; Bao, S.*; Dong, Z.-Y.*; Xi, N.*; Gao, Y.-P.*; Ma, Z.*; Wang, W.*; Qi, Z.*; Zhang, S.*; Huang, Z.*; et al.
Nature Physics, 19(12), p.1883 - 1889, 2023/09
被引用回数:19 パーセンタイル:94.23(Physics, Multidisciplinary)The magnetization of a quantum magnet can be pinned at a fraction of its saturated value by collective effects. One example of such a plateau phase is found in spin-1/2 triangular-lattice antiferromagnets. They feature strong geometrical frustration and the plateau phase therein is often interpreted as arising from an order-by-disorder mechanism driven by quantum fluctuations. Here we observe a one-third magnetization plateau under an applied magnetic field in the spin-1 antiferromagnet NaNi
BiO
with a honeycomb lattice, which, with conventional magnetic interactions, would not be geometrically frustrated. Based on our elastic neutron scattering measurements, we propose the spin structure of the plateau phase to be an unusual partial spin-flop ferrimagnetic order. Our theoretical calculations indicate that bond-anisotropic Kitaev interactions are the source of frustration that produces the plateau. These results suggest that Kitaev interactions provide a different route to frustration and phases driven by quantum fluctuations in high-spin magnets.
Fang, Y.*; Kong, L.*; Wang, R.*; Zhang, Z.*; Li, Z.*; Wu, Y.*; Bu, K.*; Liu, X.*; Yan, S.*; 服部 高典; et al.
Materials Today Physics (Internet), 34, p.101083_1 - 101083_7, 2023/05
被引用回数:8 パーセンタイル:76.08(Materials Science, Multidisciplinary)層状ファンデルワールスハライドは、外部圧力に対して特に敏感であるため、目的とする性質を持つ構造にチューンすることが可能となる。一方で、圧力に非常に敏感であるという特性は、同時に目的とする機能の実現に有害な相転移や格子歪みを引き起こす可能性があるためその操作は依然として困難である。この研究では、層状RhI結晶が持つ極めて弱い層間結合と高い機能可変性を観察した。5GPaという適度な圧力をかけると圧力誘起相転移が起こり、積層構造に変化が現れた。驚くべきことに、この相転移は、圧力に対してほぼ直線的なバンドギャップ減少という傾向に影響を与えなかった。また、より高い圧力では、1.3eVの赤方偏移というかなり大きな調整幅を伴う金属相が観測された。さらに、RhI
のキャリア濃度は30GPaで4桁増加し、光電流は7.8GPaで5桁増加することが確認された。これらの結果は、ファンデルワールスハライドの層状構造という特異な特徴を生かした探索、調整、理解のための新たな機会を創出し、原子レベルの薄さを持つマテリアルバイデザインに基づく将来のデバイスとして有望である。
Lam, T.-N.*; Chin, H.-H.*; Zhang, X.*; Feng, R.*; Wang, H.*; Chiang, C.-Y.*; Lee, S. Y.*; 川崎 卓郎; Harjo, S.; Liaw, P. K.*; et al.
Acta Materialia, 245, p.118585_1 - 118585_9, 2023/02
被引用回数:23 パーセンタイル:89.56(Materials Science, Multidisciplinary)The present study investigates the crystallographic-texture effects on the improved fatigue resistance in the CoCrFeMnNi high-entropy alloys (HEAs) with the full-size geometry of the ASTM Standards E647-99. We exploited X-ray nano-diffraction mapping to characterize the crystal-deformation levels ahead of the crack tip after stress unloading under both constant- and tensile overloaded-fatigue conditions. The crack-tip blunting-induced much higher deformation level was concentrated surrounding the crack-tip which delays the fatigue-crack growth immediately after a tensile overload. The predominant deformation texture orientation in the Paris regime was investigated, using electron backscatter diffraction and orientation distribution function analyses. The twinning formation-driven shear deformation gave rise to the development of the Goss-type texture within the plastic deformation regime under a tensile-overloaded-fatigue condition, which was attributed to enhance the crack deflection and thus the tensile induced crack-growth-retardation period in the CoCrFeMnNi HEA.
Van Rooyen, I. J.*; Ivan, L.*; Messner, M.*; Edwards, L.*; Abonneau, E.*; 上地 優; Lowe, S.*; Nilsson, K.-F.*; 岡島 智史; Pouchon, M.*; et al.
Proceedings of 4th International Conference on Generation IV and Small Reactors (G4SR-4), p.2 - 12, 2022/10
Developments in advanced manufacturing (AM) are occurring faster than the ability to introduce new materials and methods into design codes. Qualifying new AM technologies for use with nuclear design codes can be a long and complex process. The Generation IV International Forum (GIF) Advanced Manufacturing Materials Engineering Task Force (AMME-TF), focuses on how collaborative AM R&D could be used to decrease time to deployment of Gen-IV reactors. This paper provides a critical review of 2019 and 2021 surveys sampling nuclear reactor vendors, supply chain specialists, regulators, and other experts in GIF member countries. Both surveys confirmed that many AM technologies were considered opportunities by potential end users, although 90% of respondents identified the creation and approval of codes and standards as the greatest obstacle to their adoption. Industry prioritization on AM technologies, components and materials changed significantly during the three-year timespan. Additionally, the paper summarizes a 2021 modeling & simulation workshop that developed ideas on how to accelerate the qualification of AM and synthesizes the survey results and workshop conclusions into a review of critical research gaps and paths to address these gaps, particularly through international collaboration.
Liu, B.*; Feng, R.*; Busch, M.*; Wang, S.*; Wu, H.*; Liu, P.*; Gu, J.*; Bahadoran, A.*; 松村 大樹; 辻 卓也; et al.
ACS Nano, 16(9), p.14121 - 14133, 2022/09
被引用回数:92 パーセンタイル:98.75(Chemistry, Multidisciplinary)Pt single-atom materials possess an ideal atom economy but suffer from limited intrinsic activity and side reaction of producing HO
in catalyzing the oxygen reduction reaction (ORR). Here, we demonstrate that anchoring platinum alloys on single-atom Pt-decorated carbon (Pt- SAC) surmounts their inherent deficiencies, thereby enabling a complete four-electron ORR pathway catalysis with high efficiency and durability. Pt
Co@Pt-SAC demonstrates an exceptional mass and specific activities 1 order of magnitude higher than those of commercial Pt/C. They are durable throughout 50000 cycles, showing only a 10 mV decay in halfwave potential. The superior durability is attributed to the shielding effect of the Pt-SAC coating, which significantly mitigates the dissolution of Pt
Co cores.
Khalil, A. M. E.*; Han, L.*; Maamoun, I.; Tabish, T. A.*; Chen, Y.*; Eljamal, O.*; Zhang, S.*; Butler, D.*; Memon, F. A.*
Advanced Sustainable Systems (Internet), 6(8), p.2200016_1 - 2200016_16, 2022/08
被引用回数:7 パーセンタイル:47.18(Green & Sustainable Science & Technology)Graphene-based materials have emerged as alternative adsorbents, but their success in removing pharmaceutical contaminants has been limited due to degradation caused by restacking and limited control over their sizes and porosities. Driven by this issue, in the current study, to counteract the restacking behavior, graphene sheets are supported on a thread/rod-like matrix structure in a boron nitride foam material, and a novel porous composite foam-supported graphene is synthesized. The as-prepared novel composite offers extraordinary features, such as high absorption kinetics, large available surface area, high porosity, ecofriendliness and cost-effective synthesis, and excellent affinity to emerging pharmaceutical contaminants. When batch-testing graphene-based foam material and porous graphene nanosheets to remove gemfibrozil (GEM) from wastewater samples, rapid adsorption kinetics (less than 5 min) are exhibited by the graphene-based foam. Column filter studies are conducted for both materials to test their performance in removing GEM from distilled water, synthetic graywater, and actual wastewater. Overall, the foam composite-based filter marginally outperforms the sand-supported graphene filter and significantly outperforms the unsupported graphene filter. A numerical MATLAB model is developed to simulate the reactive solute transport of GEM influent through the foam filter. Also, a formal sensitivity analysis is conducted to identify the key parameters influencing the model results.
Brumm, S.*; Gabrielli, F.*; Sanchez-Espinoza, V.*; Groudev, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; Bocanegra, R.*; Herranz, L. E.*; Berda, M.*; et al.
Proceedings of 10th European Review Meeting on Severe Accident Research (ERMSAR 2022) (Internet), 13 Pages, 2022/05
The current HORIZON-2020 project on "Management and Uncertainties of Severe Accidents (MUSA)" aims at applying Uncertainty Quantification (UQ) in the modeling of Severe Accidents (SA), particularly in predicting the radiological source term of mitigated and unmitigated accident scenarios. Within its application part, the project is devoted to the uncertainty quantification of different severe accident codes when predicting the radiological source term of selected severe accident sequences of different nuclear power plant designs, e.g. PWR, VVER, and BWR. Key steps for this investigation are, (a) the selection of severe accident sequences for each reactor design, (b) the development of a reference input model for the specific design and SA-code, (c) the selection of a list of uncertain model parameters to be investigated, (d) the choice of an UQ-tool e.g. DAKOTA, SUSA, URANIE, etc., (e) the definition of the figures of merit for the UA-analysis, (f) the performance of the simulations with the SA-codes, and, (g) the statistical evaluation of the results using the capabilities, i.e. methods and tools offered by the UQ-tools. This paper describes the project status of the UQ of different SA codes for the selected SA sequences, and the technical challenges and lessons learnt from the preparatory and exploratory investigations performed.
Gatera, A.*; Belmans, J.*; Boussa, S.*; Davin, F.*; De Cock, W.*; De Florio, V.*; Doucet, F.*; Parez, L.*; Pompon, F.*; Ponton, A.*; et al.
Proceedings of 64th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams (HB2021), p.186 - 190, 2022/04
The MYRRHA project at SCK CEN, Belgium, aims at coupling a 600 MeV proton accelerator to a subcritical fission core operating at a thermal power of 60 MW. The nominal proton beam for this ADS has an intensity of 4 mA and is delivered in a quasi-CW mode. MYRRHA's linac is designed to be fault tolerant thanks to redundancy implemented in parallel at low energy and serially in the superconducting linac. Phase 1 of the project, named MINERVA, will realise a 100 MeV, 4 mA superconducting linac with the mission of demonstrating the ADS requirements in terms of reliability and of fault tolerance. As part of the reliability optimisation program the integrated prototyping of the MINERVA injector is ongoing at SCK CEN in Louvain-la-Neuve, Belgium. The injector test stand aims at testing sequentially all the elements composing the front-end of the injector. This contribution will highlight the beam dynamics choices in MINERVA's injector and their impact on ongoing commissioning activities.
Zhang, W. Q.*; 山口 敏男*; Fang, C. H.*; 吉田 亨次*; Zhou, Y. Q.*; Zhu, F. Y.*; 町田 真一*; 服部 高典; Li, W.*
Journal of Molecular Liquids, 348, p.118080_1 - 118080_11, 2022/02
被引用回数:2 パーセンタイル:16.05(Chemistry, Physical)3mol/kgのRbCl水溶液におけるイオンの水和・会合と水素結合した水の構造を、298K/0.1MPa, 298K/1GPa, 523K/1GPa, 523K/4GPaにおける中性子回折と経験的ポテンシャル構造精密化モデリングにより調べた。その結果、構造パラメータは温度と圧力に依存していることがわかった。高圧・高温条件では、RbとCl
の第二水和層がより明確になる。第一水和層におけるRb
の平均酸素配位数は、配位距離を0.290nmから0.288nmに縮めながら、常圧では6.3だったのが、4GPaでは8.9に増加した。第一水和シェルのCl
の平均酸素配位数は、常圧で5.9、4GPaで9.1と圧力により増加し、対応する配位距離は0.322nmから0.314nmへと減少した。Rb
と中心の水分子の第一溶媒和シェルにおける水双極子の配向は圧力に敏感であるが、Cl
の第一溶媒和シェルにおける水双極子の配向は温度圧力によらずあまり変化しなかった。Rb
-Cl
の隣接イオンペアの数は、温度が高くなると減少し、圧力が高くなると増加する。水分子は密に詰まっており、極限状態では水分子の四面体水素結合ネットワークはもはや存在しない。