検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

NiO/Nb$$_{2}$$O$$_{5}$$/C hydrazine electrooxidation catalysts for anion exchange membrane fuel cells

坂本 友和*; 増田 晃之*; 吉本 光児*; 岸 浩史*; 山口 進*; 松村 大樹; 田村 和久; 堀 彰宏*; 堀内 洋輔*; Serov, A.*; et al.

Journal of the Electrochemical Society, 164(4), p.F229 - F234, 2017/01

 被引用回数:13 パーセンタイル:43.47(Electrochemistry)

NiO/ Nb$$_{2}$$O$$_{5}$$/C (8:1), (4:1), (2:1), NiO/C, and Ni/C catalysts for hydrazine electrooxidation were synthesized by an evaporation drying method followed by thermal annealing. Prepared catalysts were characterized by X-ray diffraction (XRD), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), energy dispersive X-ray spectrometry (EDS), and X-ray absorption fine structure (XAFS). The highest catalytic activity in mentioned above reactionwas found for Ni/C, followed by: NiO/Nb$$_{2}$$O$$_{5}$$/C (8:1), NiO/Nb$$_{2}$$O$$_{5}$$/C (4:1). NiO/Nb$$_{2}$$O$$_{5}$$/C (2:1) whiles NiO/C has almost no activity for hydrazine oxidation. It was explained by oxygen defect of NiO in NiO/ Nb$$_{2}$$O$$_{5}$$/C from XAFS analysis. The selectivity hydrazine electrooxidation as measured by ammonia production resulted in observation that metallic Ni surface facilitates N-N bond breaking of hydrazine, which was confirmed by density functional theory (DFT) calculations.

論文

Mechanism study of hydrazine electrooxidation reaction on nickel oxide surface in alkaline electrolyte by in situ XAFS

坂本 友和*; 岸 浩史*; 山口 進*; 松村 大樹; 田村 和久; 堀 彰宏*; 堀内 洋輔*; Serov, A.*; Artyushkova, K.*; Atanassov, P.*; et al.

Journal of the Electrochemical Society, 163(10), p.H951 - H957, 2016/08

 被引用回数:30 パーセンタイル:76.46(Electrochemistry)

The catalytic process takes place on nickel oxide surface of a Ni oxide nano-particle decorated carbon support (NiO/C). In-situ X-ray absorption fine structure (XAFS) spectroscopy was used to investigate the reaction mechanism for hydrazine electrooxidation on NiO surface. The spectra of X-ray absorption near-edge structure (XANES) of Ni K-edge indicated that adsorption of OH$$^{-}$$ on Ni site during the hydrazine electrooxidation reaction. Density functional theory (DFT) calculations were used to elucidate and suggest the mechanism of the electrooxidation and specifically propose the localization of electron density from OH$$^{-}$$ to 3d orbital of Ni in NiO. It is found that the accessibility of Ni atomic sites in NiO structure is critical for hydrazine electrooxidation. Based on this study, we propose a possible reaction mechanism for selective hydrazine electrooxidation to water and nitrogen taking place on NiO surface as it is applicable to direct hydrazine alkaline membrane fuel cells.

2 件中 1件目~2件目を表示
  • 1