検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 11 件中 1件目~11件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Acoustically driven magnon-phonon coupling in a layered antiferromagnet

Lyons, T. P.*; Puebla, J.*; 山本 慧; Deacon, R. S.*; Hwang, Y.*; 石橋 幸治*; 前川 禎通*; 大谷 義近*

Physical Review Letters, 131(19), p.196701_1 - 196701_6, 2023/11

Harnessing the causal relationships between mechanical and magnetic properties of van der Waals materials presents a wealth of untapped opportunity for scientific and technological advancement, from precision sensing to novel memories. This can, however, only be exploited if the means exist to efficiently interface with the magnetoelastic interaction. Here, we demonstrate acoustically-driven spin-wave resonance in a crystalline antiferromagnet, chromium trichloride, via surface acoustic wave irradiation. The resulting magnon-phonon coupling is found to depend strongly on sample temperature and external magnetic field orientation, and displays a high sensitivity to extremely weak magnetic anisotropy fields in the few mT range. Our work demonstrates a natural pairing between power-efficient strain-wave technology and the excellent mechanical properties of van der Waals materials, representing a foothold towards widespread future adoption of dynamic magneto-acoustics.

論文

Valley-selective phonon-magnon scattering in magnetoelastic superlattices

Liao, L.*; Puebla, J.*; 山本 慧; Kim, J.*; 前川 禎通*; Hwang, Y.*; Ba, Y.*; 大谷 義近*

Physical Review Letters, 131(17), p.176701_1 - 176701_6, 2023/10

Phonons and magnons are engineered by periodic potential landscapes in phononic and magnonic crystals, and their combined studies may enable valley phonon transport tunable by the magnetic field. Through nonreciprocal surface acoustic wave transmission, we demonstrate valley-selective phonon-magnon scattering in magnetoelastic superlattices. The lattice symmetry and the out-of-plane magnetization component control the sign of nonreciprocity. The phonons in the valleys play a crucial role in generating nonreciprocal transmission by inducing helical strains that couple with the magnons. The transmission spectra show a nonreciprocity peak near a transmission gap, matching the phononic band structure. Our results open the way for manipulating valley phonon transport through periodically varying magnon-phonon coupling.

論文

Perspectives on spintronics with surface acoustic waves

Puebla, J.*; Hwang, Y.*; 前川 禎通*; 大谷 義近*

Applied Physics Letters, 120(22), p.220502_1 - 220502_9, 2022/05

Surface acoustic waves (SAWs) are elastic waves propagating on the surface of solids with the amplitude decaying into the solid. The well- established fabrication of compact SAW devices, together with well-defined resonance frequencies, places SAWs as an attractive route to manipulate the magnetization states in spintronics, all of which is made possible by the magnetostriction and magnetoelastic effects. Here, we review the basic characteristics of SAW devices and their interaction out-of-resonance and in-resonance with the magnetization in thin films. We describe our own recent results in this research field and closely related works and provide our perspectives moving forward.

論文

Interaction between surface acoustic waves and spin waves in a ferromagnetic thin film

山本 慧; Xu, M.*; Puebla, J.*; 大谷 義近*; 前川 禎通*

Journal of Magnetism and Magnetic Materials, 545, p.168672_1 - 168672_10, 2022/03

 被引用回数:5 パーセンタイル:53.84(Materials Science, Multidisciplinary)

We present a theoretical description of magnon-phonon interactions in a multi-layer structure containing a ferromagnetic thin film. The formalism is applicable to an arbitrary direction of external magnetic field and various types of acoustic waves including Rayleigh and Love surface modes. A particular attention is paid to the spatial profile of the acoustic wave modes and analytical expressions for the effective coupling coefficients are derived taking into account the degree of mode profile overlap between spin waves and acoustic waves. The results are applied to reproduce a strongly anisotropic and non-reciprocal linewidth of acoustic ferromagnetic resonance reported in a recent experiment.

論文

Nonreciprocal surface acoustic wave propagation via magneto-rotation coupling

Xu, M.*; 山本 慧; Puebla, J.*; Baumgaertl, K.*; Rana, B.*; 三浦 勝哉*; 高橋 宏昌*; Grundler, D.*; 前川 禎通*; 大谷 義近*

Science Advances (Internet), 6(32), p.eabb1724_1 - eabb1724_4, 2020/08

 被引用回数:62 パーセンタイル:96.95(Multidisciplinary Sciences)

One of the most fundamental forms of magnon-phonon-interaction is an intrinsic property of magnetic materials, the "magnetoelastic coupling." This particular form of interaction has been the basis for describing magnetic materials and their strain related applications, where strain induces changes of internal magnetic fields. Different from the magnetoelastic coupling, more than 40 years ago, it was proposed that surface acoustic waves may induce surface magnons via rotational motion of the lattice in anisotropic magnets. However, a signature of this magnon-phonon coupling mechanism, termed magneto-rotation coupling, has been elusive. Here, we report the first observation and theoretical framework of the magneto-rotation coupling in a perpendicular anisotropic ultra-thin lim Ta/CoFeB/MgO, which consequently induces nonreciprocal acoustic wave attenuation with an unprecedented ratio up to 100% rectification at a theoretically predicted optimized condition. Our work not only experimentally demonstrates a fundamentally new path for investigating magnon-phonon coupling, but also justifies the feasibility of the magneto-rotation coupling based application.

論文

Acoustic ferromagnetic resonance and spin pumping induced by surface acoustic waves

Puebla, J.*; Xu, M.*; Rana, B.*; 山本 慧; 前川 禎通*; 大谷 義近*

Journal of Physics D; Applied Physics, 53(26), p.264002_1 - 264002_7, 2020/06

 被引用回数:27 パーセンタイル:87.46(Physics, Applied)

Voltage induced magnetization dynamics of magnetic thin films is a valuable tool to study anisotropic fields, exchange couplings, magnetization damping and spin pumping mechanism. A particularly well established technique is the ferromagnetic resonance (FMR) generated by the coupling of microwave photons and magneti- zation eigenmodes in the GHz range. Here we review the basic concepts of the so-called acoustic ferromagnetic resonance technique (a-FMR) induced by the coupling of surface acoustic waves (SAW) and magnetization of thin films. Interestingly, additional to the benefits of the microwave excited FMR technique, the coupling be- tween SAW and magnetization also offers fertile ground to study magnon-phonon and spin rotation couplings. We describe the in-plane magnetic field angle dependence of the a-FMR by measuring the absorption / trans- mission of SAW and the attenuation of SAW in the presence of rotational motion of the lattice, and show the consequent generation of spin current by acoustic spin pumping.

論文

Spin-current-driven thermoelectric generation based on interfacial spin-orbit coupling

Yagmur, A.*; 軽部 修太郎*; 内田 健一*; 近藤 浩太*; 井口 亮*; 吉川 貴史*; 大谷 義近*; 齊藤 英治

Applied Physics Letters, 108(24), p.242409_1 - 242409_4, 2016/06

 被引用回数:6 パーセンタイル:33.55(Physics, Applied)

The longitudinal spin Seebeck effect (SSE) in Bi $$_{2}$$O$$_{3}$$/Cu/yttrium-iron-garnet (YIG) devices has been investigated. When an out-of-plane temperature gradient is applied to the Bi$$_{2}$$O$$_{3}$$/Cu/YIG device, a spin current is generated across the Cu/YIG interface via the SSE and then converted into electric voltage due to the spin$-orbit coupling at the Bi$_{2}$$O$$_{3}$$/Cu interface. The sign of the SSE voltage in the Bi$$_{2}$$O$$_{3}$$/Cu/YIG devices is opposite to that induced by the conventional inverse spin Hall effect in Pt/YIG devices. The SSE voltage in the Bi$$_{2}$$O$$_{3}$$/Cu/YIG devices disappears in the absence of the Bi$$_{2}$$O$$_{3}$$layer and its thermoelectric conversion efficiency is independent of the Cu thickness, indicating the important role of the Bi$$_{2}$$O$$_{3}$$/Cu interface. This result demonstrates that not only the bulk inverse spin Hall effect but also the spin-orbit coupling near the interface can be used for SSE-based thermoelectric generation.

論文

Strong suppression of the spin hall effect in the spin glass state

新見 康洋*; 木俣 基*; 大森 康智*; Gu, B.; Ziman, T.*; 前川 禎通; Fert, A.*; 大谷 義近*

Physical Review Letters, 115(19), p.196602_1 - 196602_5, 2015/11

 被引用回数:11 パーセンタイル:63.21(Physics, Multidisciplinary)

We have measured spin Hall effects in spin glass metals, CuMnBi alloys, with the spin absorption method in the lateral spin valve structure. Far above the spin glass temperature $$T_{g}$$ where the magnetic moments of Mn impurities are randomly frozen, the spin Hall angle of a CuMnBi ternary alloy is as large as that of a CuBi binary alloy. Surprisingly, however, it starts to decrease at about 4$$T_{g}$$ and becomes as little as 7 times smaller at 0.5$$T_{g}$$. A similar tendency was also observed in anomalous Hall effects in the ternary alloys. We propose an explanation in terms of a simple model considering the relative dynamics between the localized moment and the conduction electron spin.

論文

Effect of anisotropic spin absorption on the Hanle effect in lateral spin valves

井土 宏*; 福間 康裕*; 高橋 三郎*; 前川 禎通; 大谷 義近*

Physical Review B, 89(8), p.081308_1 - 081308_5, 2014/02

 被引用回数:25 パーセンタイル:70.61(Materials Science, Multidisciplinary)

We have succeeded in fully describing dynamic properties of spin current including the different spin absorption mechanisms for longitudinal and transverse spins in lateral spin valves, which enable one to elucidate intrinsic spin transport and relaxation mechanisms in the nonmagnet. The deduced spin lifetimes are found independent of the contact type. From the transit-time distribution of spin current extracted from the Fourier transform in Hanle measurement data, the velocity of the spin current in Ag with Py/Ag Ohmic contact turns out much faster than that expected from the widely used model.

論文

The Spin Hall effect as a probe of nonlinear spin fluctuations

Wei, D. H.*; 新見 康洋*; Gu, B.; Ziman, T.*; 前川 禎通; 大谷 義近*

Nature Communications (Internet), 3, p.1058_1 - 1058_5, 2012/09

 被引用回数:33 パーセンタイル:80.78(Multidisciplinary Sciences)

The spin Hall effect (SHE) and its inverse have key roles in spintronic devices as they allow conversion of charge currents to and from spin currents. The conversion efficiency strongly depends on material details, such as the electronic band structure and the nature of impurities. Here we show an anomaly in the inverse SHE in weak ferromagnetic NiPd alloys near their Curie temperatures with a shape independent of material details, such as Ni concentrations. By extending Kondo's model for the anomalous Hall effect (AHE), we explain the observed anomaly as originating from the second-order nonlinear spin fluctuation of Ni moments. This brings to light an essential symmetry difference between the SHE and the AHE, which reflects the first-order nonlinear fluctuations of local moments. Our finding opens up a new application of the SHE, by which a minuscule magnetic moment can be detected.

論文

Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves

福間 康裕*; Le, W.*; 井土 宏*; 高橋 三郎; 前川 禎通; 大谷 義近*

Nature Materials, 10(7), p.527 - 531, 2011/07

 被引用回数:160 パーセンタイル:97.4(Chemistry, Physical)

The non-local spin injection in lateral spin valves is strongly expected to be an effective method to generate a pure spin current for potential spintronic application. However, the spin-valve voltage, which determines the magnitude of the spin current flowing into an additional ferromagnetic wire, is typically of the order of 1$$mu$$V. Here we show that lateral spin valves with low-resistivity NiFe/MgO/Ag junctions enable efficient spin injection with high applied current density, which leads to the spin-valve voltage increasing 100-fold. Hanle effect measurements demonstrate a long-distance collective 2$$pi$$ spin precession along a 6-$$mu$$m-long Ag wire. These results suggest a route to faster and manipulable spin transport for the development of pure spin-current-based memory, logic and sensing devices.

11 件中 1件目~11件目を表示
  • 1