検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 1 件中 1件目~1件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Phase transition and domain formation in ferroaxial crystals

林田 健志*; 上村 洋平*; 木村 健太*; 松岡 悟志*; 萩原 雅人; 廣瀬 左京*; 盛岡 仁*; 長谷川 達夫*; 木村 剛*

Physical Review Materials (Internet), 5(12), p.124409_1 - 124409_10, 2021/12

 被引用回数:11 パーセンタイル:79.95(Materials Science, Multidisciplinary)

The ferroaxial order, which is characterized by a rotational structural distortion in a crystal, has been recently proposed as one of ferroic orders. Though the domain formation is a characteristic feature in ferroic materials, there has been little study done concerning that for the ferroaxial order. Here, we investigate ferroaxial domains that are formed through a ferroaxial transition in two representative ferroaxial materials, NiTiO$$_{3}$$ and RbFe(MoO$$_{4}$$)$$_{2}$$. We spatially resolve their domain structures using an optical method based on electric-field- induced optical rotation, that is, electrogyration (EG). In NiTiO$$_{3}$$, multi-domains are constructed when crystals undergo a ferroaxial transition and the domain size depends on the cooling rate around the transition temperature. Furthermore, the ferroaxial domain structure obtained by the EG measurement is well matched with that by scanning X-ray diffraction (XRD). RbFe(MoO$$_{4}$$)$$_{2}$$ also exhibits multi-domain states in which domain patterns are different each time a crystal undergoes a ferroaxial transition. In addition, the temperature dependence of the EG signal well obeys that of the order parameter of a first-order phase transition. These results ensure the effectiveness of the EG effect to elucidate the nature of ferroaxial order.

1 件中 1件目~1件目を表示
  • 1