検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Annealing of electron irradiated, thick, ultrapure 4H SiC between 1100$$^{circ}$$C and 1500$$^{circ}$$C and measurements of lifetime and photoluminescence

Klahold, W. M.*; Devaty, R. P.*; Choyke, W. J.*; 河原 洸太朗*; 木本 恒暢*; 大島 武

Materials Science Forum, 778-780, p.273 - 276, 2014/02

Ultra-pure n-type (8$$times$$10$$^{13}$$ cm$$^{-3}$$), 99 $$mu$$m thick epitaxial layers of hexagonal (4H) silicon carbide (SiC) were irradiated with electrons either at 170 keV with a fluence of 5$$times$$10$$^{16}$$ cm$$^{-2}$$ or at 1 MeV with a fluence of 1$$times$$10$$^{15}$$ cm$$^{-2}$$ in various geometries. Low temperature photoluminescence (LTPL) spectra and microwave photoconductance ($$mu$$PCD) lifetime measurements were carried out for all samples before and after annealing in argon in free standing mode or on a POCO carbon (Poco Graphite, Inc.) platform, every 50 $$^{circ}$$C from 1100 $$^{circ}$$C to 1500 $$^{circ}$$C. However, no improvement in carrier lifetime was observed although previous studies reported that carbon diffused into SiC during high temperature treatment improves carrier lifetime. The result obtained in this study suggests that simple carbon diffusion model cannot be applied and more study is required to understand the injection of carbon interstitials into the SiC lattice.

論文

Negative-U system of carbon vacancy in 4H-SiC

Son, N. T.*; Trinh, X. T.*; L${o}$vile, L. S.*; Svensson, B. G.*; 河原 洸太朗*; 須田 淳*; 木本 恒暢*; 梅田 享英*; 磯谷 順一*; 牧野 高紘; et al.

Physical Review Letters, 109(18), p.187603_1 - 187603_5, 2012/11

 被引用回数:199 パーセンタイル:97.98(Physics, Multidisciplinary)

Nitrogen-doped n-type 4H-Silicon carbide (SiC) epitaxial layers were irradiated with electrons at 250 keV. Carbon vacancy (V$$_{C}$$) signals at both the h and k sites were studied using photoexitation Electron Paramagnetic Resonance (photo-EPR) and Deep Level Transient Spectroscopy (DLTS). As a result, double negative charge states of V$$_{C}$$, showing its negative-U system were revealed. By the direct correlation between EPR and DLTS data, it was concluded that Z$$_{1}$$ is V$$_{C}$$ at h site and Z$$_{2}$$ is V$$_{C}$$ at k site. In addition, we concluded that EH$$_{7}$$ is a single donor level of V$$_{C}$$.

2 件中 1件目~2件目を表示
  • 1