検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Maximizing $$T_c$$ by tuning nematicity and magnetism in FeSe$$_{1-x}$$S$$_x$$ superconductors

松浦 康平*; 水上 雄太*; 新井 佑基*; 杉村 優一*; 前島 尚行*; 町田 晃彦*; 綿貫 徹*; 福田 竜生; 矢島 健*; 廣井 善二*; et al.

Nature Communications (Internet), 8, p.1143_1 - 1143_6, 2017/10

 被引用回数:80 パーセンタイル:91.57(Multidisciplinary Sciences)

A fundamental issue concerning iron-based superconductivity is the roles of electronic nematicity and magnetism in realising high transition temperature ($$T_c$$). To address this issue, FeSe is a key material, as it exhibits a unique pressure phase diagram involving nonmagnetic nematic and pressure-induced antiferromagnetic ordered phases. However, as these two phases in FeSe have considerable overlap, how each order affects superconductivity remains perplexing. Here we construct the three-dimensional electronic phase diagram, temperature ($$T$$) against pressure ($$P$$) and iso-valent S-substitution ($$x$$), for FeSe$$_{1-x}$$S$$_x$$. By simultaneously tuning chemical and physical pressures, against which the chalcogen height shows a contrasting variation, we achieve a complete separation of nematic and antiferromagnetic phases. In between, an extended nonmagnetic tetragonal phase emerges, where $$T_c$$ shows a striking enhancement. The completed phase diagram uncovers that high-$$T_c$$ superconductivity lies near both ends of the dome-shaped antiferromagnetic phase, whereas $$T_c$$ remainslow near the nematic critical point.

口頭

プラズマ窒化技術とAlON/SiO$$_{2}$$積層絶縁膜によるSiC-MOSデバイスの高機能化

渡部 平司*; 景井 悠介*; 小園 幸平*; 桐野 嵩史*; 渡邊 優*; 箕谷 周平*; 中野 佑紀*; 中村 孝*; 吉越 章隆; 寺岡 有殿; et al.

no journal, , 

SiC-MOSFETはノーマリーオフ型の高性能パワーデバイスとして期待されている。しかし、熱酸化SiC-MOS界面には残留炭素等に起因する電気的欠陥が高密度に存在し、チャネル移動度の劣化が著しい。また実用化に向けてゲート絶縁膜の信頼性向上が必須であるが、絶縁劣化機構の詳細な理解には至っていない。われわれはSiC-MOSデバイスの高機能化を目的として、プラズマ窒化技術を応用したMOS界面の高品質化、及び窒化アルミナ(AlON)高誘電率絶縁膜と薄いSiO$$_{2}$$下地層との積層構造による絶縁特性と信頼性向上技術を研究している。本講演では、これらの技術について最近の研究成果を報告する。

2 件中 1件目~2件目を表示
  • 1