検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 8 件中 1件目~8件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Controls over structural and electronic properties of epitaxial graphene on silicon using surface termination of 3C-SiC(111)/Si

吹留 博一*; 阿部 峻佑*; 高橋 良太*; 今泉 京*; 猪俣 州哉*; 半田 浩之*; 齋藤 英司*; 遠田 義晴*; 吉越 章隆; 寺岡 有殿; et al.

Applied Physics Express, 4(11), p.115104_1 - 115104_3, 2011/11

 被引用回数:35 パーセンタイル:78.55(Physics, Applied)

Epitaxial graphene on Si (GOS) using a heteroepitaxy of 3C-SiC/Si has attracted recent attention owing to its capability to fuse graphene with Si-based electronics. We demonstrate that the stacking, interface structure, and hence, electronic properties of GOS can be controlled by tuning the surface termination of 3C-SiC(111)/Si, with a proper choice of Si substrate and SiC growth conditions. On the Si-terminated 3C-SiC(111)/Si(111) surface, GOS is Bernal-stacked with a band splitting, while on the C-terminated 3C-SiC(111)/Si(110) surface, GOS is turbostratically stacked without a band splitting. This work enables us to precisely control the electronic properties of GOS for forthcoming devices.

論文

Control of epitaxy of graphene by crystallographic orientation of a Si substrate toward device applications

吹留 博一*; 高橋 良太*; 阿部 峻佑*; 今泉 京*; 半田 浩之*; Kang, H. C.*; 唐澤 宏美*; 末光 哲也*; 尾辻 泰一*; 遠田 義晴*; et al.

Journal of Materials Chemistry, 21(43), p.17242 - 17248, 2011/11

 被引用回数:28 パーセンタイル:63.49(Chemistry, Physical)

Graphene is a promising material in the next-generation devices. Large-scale epitaxial graphene should be grown on Si substrates to take over the accumulated technologies for integrated devices. We have for this reason developed epitaxy of graphene on Si (GOS) and device operation of the backgate field-effect transistors (FETs) using GOS has been confirmed. It is demonstrated in this paper that the GOS method enables us to tune the structural and electronic properties of graphene in terms of the crystallographic orientation of the Si substrate. Furthermore, it is shown that the uniformity of the GOS process within a sizable area enables us to reliably fabricate topgate FETs using conventional lithography techniques. GOS can be thus the key material in the next-generation devices owing to the tunability of the electronic structure by the crystallographic orientation of the Si substrate.

論文

Low-energy-electron-diffraction and X-ray-phototelectron-spectroscopy studies of graphitization of 3C-SiC(111) thin film on Si(111) substrate

高橋 良太*; 半田 浩之*; 阿部 峻佑*; 今泉 京*; 吹留 博一*; 吉越 章隆; 寺岡 有殿; 末光 眞希*

Japanese Journal of Applied Physics, 50(7), p.070103_1 - 070103_6, 2011/07

 被引用回数:31 パーセンタイル:75.44(Physics, Applied)

Epitaxial graphene can be formed on silicon substrates by annealing a 3C-SiC film formed on a silicon substrate in ultrahigh vacuum (G/3C-SiC/Si). In this work, we explore the graphitization process on the 3C-SiC(111)/Si(111) surface by using low-energy electron diffraction and X-ray photoelectron spectroscopy (XPS) and compare them with that on 6H-SiC(0001). Upon annealing at substrate temperature higher than 1423 K, the 3C-SiC(111)/Si(111) surface follows the sequence of ($$sqrt{3}$$$$times$$$$sqrt{3}$$)R30$$^{circ}$$, (6$$sqrt{3}$$$$times$$6$$sqrt{3}$$)R30$$^{circ}$$ and (1$$times$$1)$$_{rm graphene}$$ in the surface structures. The C 1s core level according to XPS indicates that a buffer layer, identical with that in G/6H-SiC(0001), exists at the G/3C-SiC(111) buffer. These observations strongly suggest that graphitization on the surface of the 3C-SiC(111) face proceeds in a similar manner to that on the Si-terminated hexagonal bulk SiC crystals.

口頭

面方位回転エピタキシャル成長3C-SiC(111)/Si(110)薄膜上グラフェン成長過程のLEED、SR-XPS観察

高橋 良太*; 半田 浩之*; 阿部 峻佑*; 猪俣 州哉*; 今泉 京*; 吹留 博一*; 寺岡 有殿; 吉越 章隆; 小嗣 真人*; 大河内 拓雄*; et al.

no journal, , 

3C-SiC(111)/Si(110)薄膜表面にエピタキシャルグラフェンを高品質に形成できることを見いだしている。今回、このグラフェン形成過程を低エネルギー電子回折(LEED)と放射光X線光電子分光(SR-XPS)を用いて詳細に評価した。1250$$^{circ}$$Cのグラフェン化アニール後、LEEDパタンはグラフェンの(1$$times$$1)パタンへと変化した。一方、SR-XPSの結果から、グラフェン/SiC界面には界面層が存在しないことがわかった。これらの知見は既に多数報告されているバルクSiC結晶基板C面(4H, 6H-SiC(000-1))のグラフェン形成過程と同一である。また、3C-SiC(111)/Si(110)表面がC終端であるとのD$$_{2}$$-TPD観察とも矛盾しない。したがって、Si(110)基板上3C-SiC(111)薄膜はC原子終端であり、その表面のグラフェンはturbostratic stackingをしながら形成されることが明らかになった。

口頭

3C-SiC(100)/Si(100)薄膜上グラフェン形成過程のLEED及びSR-XPS観察

猪俣 州哉*; 半田 浩之*; 阿部 峻佑*; 高橋 良太*; 今泉 京*; 吹留 博一*; 寺岡 有殿; 吉越 章隆; 小嗣 真人*; 大河内 拓雄*; et al.

no journal, , 

Si(100)基板上に形成した3C-SiC(100)薄膜の熱処理によって形成されるグラフェンの表面原子配列を低エネルギー電子回折(LEED)法で、表面原子組成と化学結合状態を放射光X線光電子分光(SR-XPS)法で評価した。LEEDからグラフェンは下地のSiC(100)層に対して15度回転して積層していることがわかった。また、SR-XPSからグラフェン層とSiC(100)層の間には界面層が存在しないことがわかった。

口頭

Si(100)基板上3C-SiC(100)エピタキシャル薄膜のグラフェン形成過程のLEED及びSR-XPS観察

猪俣 州哉*; 半田 浩之*; 阿部 峻佑*; 高橋 良太*; 今泉 京*; 吹留 博一*; 寺岡 有殿; 吉越 章隆; 小嗣 真人*; 大河内 拓雄*; et al.

no journal, , 

低エネルギー電子回折(LEED)と放射光X線光電子分光(SR-XPS)を用いて3C-SiC(100)/Si表面へのグラフェン形成過程を評価した。LEEDパターンから一定角(15度)を持って回転しながら積層するrotational stackingが起こっていることがわかった。また、C1s光電子スペクトルの角度分解測定の結果から、Si終端3C-SiC(111)面やSi終端6H-SiC(0001)面上にグラフェンを形成したときに見られた界面層が存在しないことが明らかとなった。以上の結果から、3C-SiC(100)/Si(100)基板上のグラフェン形成過程においては、グラフェン層間相互作用が少なく、各層が単層グラフェンとしての性質を保持すると期待される。

口頭

リアルタイム放射光光電子分光によるエピタキシャルグラフェン形成過程の研究

末光 眞希*; 吹留 博一*; 高橋 良太*; 阿部 峻佑*; 今泉 京*; 寺岡 有殿; 吉越 章隆

no journal, , 

Si基板上にエピ成長させたSiC薄膜上にグラフェンを形成させるグラフェン・オン・シリコン(GOS)技術を開発した。グラフェン化は6H-SiCでは1350$$^{circ}$$C、3C-SiCでは1250$$^{circ}$$Cの真空アニールにより行った。GOS法によるグラフェン形成の様子はC1s内殻光電子分光から確認される。SiCピークの結合エネルギーは、3C-SiC(111)のグラフェン化では283.24eVに対して、6H-SiC(0001)のグラフェン化では283.7eVとなり、前者の方が若干低下している。Si終端n型SiC基板表面のグラフェン化では、SiCからグラフェンへ負の電荷移動が起こり、SiC表面バンドが上に曲がることが知られている。この場合、電荷移動が強いほどSiC成分の結合エネルギーは浅くなることが予想される。今回の結果は3C-SiC(111)のグラフェン化においても同様の電荷移動が生じ、かつ、それが6H-SiC(0001)グラフェン化表面より強いことを示唆している。

口頭

回転エピ成長3C-SiC(111)/Si(110)の表面化学結合状態

三本菅 正太*; 阿部 峻佑*; 高橋 良太*; 今泉 京*; 半田 浩之*; 吉越 章隆; 寺岡 有殿; 小嗣 真人*; 大河内 拓雄*; 木下 豊彦*; et al.

no journal, , 

回転エピ3C-SiC(111)表面上のグラフェン化機構の解明を目的に、3C-SiC(111)/Si(110)をグラフェン化した表面の化学結合状態を調べた。真空熱処理後のSiC(111)/Si(110)表面からの重水素の昇温脱離スペクトルでは、スペクトル中に出現するC-D/Si-Dピークの割合は1対3であるので、Cリッチな表面であることがわかった。また、同表面からの低速電子回折パターンは3$$times$$3パターンであり、グラフェン化前のC終端6H-SiC(000-1)表面において見られるものと同一であった。以上の結果から、SiC(111)/Si(110)の表面はC終端されていることが示された。

8 件中 1件目~8件目を表示
  • 1